K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2015

 

a) ( 4x+1) (12x-1) (3x+2) (x+1) -4

=(4x+1)(3x+2)(12x-1)(x+1)-4

=(12x2+11x+2)(12x2+11x-1)-4

Đặt t=12x2+11x+2 ta được:

t.(t-3)-4

=t2-3t-4

=t2+t-4t-4

=t.(t+1)-4.(t+1)

=(t+1)(t-4)

thay t=12x2+11x+2 ta được:

(12x2+11x+3)(12x2+11x-2)

Vậy ( 4x+1) (12x-1) (3x+2) (x+1) -4=(12x2+11x+3)(12x2+11x-2)

b) (x2+2x)2+9x2+18x+20

=(x2+2x)2+9.(x2+2x)+20

Đặt y=x2+2x ta được:

y2+9y+20

=y2+4y+5y+20

=y.(y+4)+5.(y+4)

=(y+4)(y+5)

thay y=x2+2x ta được:

(x2+2x+4)(x2+2x+5)

Vậy (x2+2x)2+9x2+18x+20=(x2+2x+4)(x2+2x+5)

 

29 tháng 1 2023

\(a.\) \(ax^2-a^2x-x+a\)

\(=\left(ax^2-a^2x\right)-\left(x-a\right)\)

\(=ax\left(x-a\right)-\left(x-a\right)\)

\(=\left(ax-1\right)\left(x-a\right)\)

\(b.\) \(18x^3-12x^2+2x\)

\(=2x\left(9x^2-6x+1\right)\)

\(=2x\left(3x-1\right)^2\)

\(c.\) \(x^3-5x^2-4x+20\)

\(=\left(x^3-5x^2\right)-\left(4x-20\right)\)

\(=x^2\left(x-5\right)-4\left(x-5\right)\)

\(=\left(x^2-4\right)\left(x-5\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x-5\right)\)

\(d.\) \(\left(x+7\right)\left(x+15\right)+15\)

\(=x^2+15x+7x+105+15\)

\(=x^2+22x+120\)

\(=\left(x+10\right)\left(x+12\right)\)

29 tháng 1 2023

loading...  

12 tháng 10 2023

a: \(x^2+4x+4=x^2+2\cdot x\cdot2+2^2=\left(x+2\right)^2\)

b: \(4x^2-4x+1=\left(2x\right)^2-2\cdot2x\cdot1+1^2=\left(2x-1\right)^2\)

c: \(2x-1-x^2\)

\(=-\left(x^2-2x+1\right)=-\left(x-1\right)^2\)

d: \(x^2+x+\dfrac{1}{4}=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)

e: \(9-x^2=3^2-x^2=\left(3-x\right)\left(3+x\right)\)

g: \(\left(x+5\right)^2-4x^2=\left(x+5+2x\right)\left(x+5-2x\right)\)

\(=\left(5-x\right)\left(5+3x\right)\)

h: \(\left(x+1\right)^2-\left(2x-1\right)^2\)

\(=\left(x+1+2x-1\right)\left(x+1-2x+1\right)\)

\(=3x\left(-x+2\right)\)

i: \(=x^2y^2-4xy+4-3\)

\(=\left(xy-2\right)^2-3=\left(xy-2-\sqrt{3}\right)\left(xy-2+\sqrt{3}\right)\)

k: \(=y^2-\left(x-1\right)^2\)

\(=\left(y-x+1\right)\left(y+x-1\right)\)

l: \(=x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=\left(x+2\right)^3\)

m: \(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2-y^3=\left(2x-y\right)^3\)

9 tháng 12 2023

Bài 3

a) x² + 10x + 25

= x² + 2.x.5 + 5²

= (x + 5)²

b) 8x - 16 - x²

= -(x² - 8x + 16)

= -(x² - 2.x.4 + 4²)

= -(x - 4)²

c) x³ + 3x² + 3x + 1

= x³ + 3.x².1 + 3.x.1² + 1³

= (x + 1)³

d) (x + y)² - 9x²

= (x + y)² - (3x)²

= (x + y - 3x)(x + y + 3x)

= (y - 2x)(4x + y)

e) (x + 5)² - (2x - 1)²

= (x + 5 - 2x + 1)(x + 5 + 2x - 1)

= (6 - x)(3x + 4)

9 tháng 12 2023

Bài 4

a) x² - 9 = 0

x² = 9

x = 3 hoặc x = -3

b) (x - 4)² - 36 = 0

(x - 4 - 6)(x - 4 + 6) = 0

(x - 10)(x + 2) = 0

x - 10 = 0 hoặc x + 2 = 0

*) x - 10 = 0

x = 10

*) x + 2 = 0

x = -2

Vậy x = -2; x = 10

c) x² - 10x = -25

x² - 10x + 25 = 0

(x - 5)² = 0

x - 5 = 0

x = 5

d) x² + 5x + 6 = 0

x² + 2x + 3x + 6 = 0

(x² + 2x) + (3x + 6) = 0

x(x + 2) + 3(x + 2) = 0

(x + 2)(x + 3) = 0

x + 2 = 0 hoặc x + 3 = 0

*) x + 2 = 0

x = -2

*) x + 3 = 0

x = -3

Vậy x = -3; x = -2

Câu 2: 

a: \(\Leftrightarrow3x^2+2x-1=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)

b: \(\Leftrightarrow x^3-4x-x^3-8=4\)

hay x=-3

25 tháng 11 2021

a ) x=0; x = -(căn bậc hai(7)*i-3)/8;x = (căn bậc hai(7)*i+3)/8;

b ) -(y-x-3)*(y+x+3)

25 tháng 11 2021

a) \(12x^3-9x^2+3x\)

\(=3x\left(4x^2-3x+1\right)\)

b) \(x^2-y^2+6x+9\)

\(=\left(x^2+6x+9\right)-y^2\)

\(=\left(x+3\right)^2-y^2\)

\(=\left(x+y+3\right)\left(x-y+3\right)\)