cmr: trong một tứ giác tổng hai đường chéo lớn hơn tổng hai cạnh đối của tứ giác đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Gọi tứ giác cần chứng minh là ABCD, giao điểm hai đường chéo AC và BD là O
Xét ΔABO có AO+OB>AB
Xét ΔCOD có OC+OD>CD
Xét ΔAOD có OA+OD>AD
Xét ΔBOC có OB+OC>BC
Ta có: AC+BD=AO+OB+OC+OD
\(\Leftrightarrow AC+BD>AB+CD\)
Ta có: AC+BD=AO+OD+OB+OC
\(\Leftrightarrow AC+BD>AD+BC\)
mà AC+BD>AB+CD
nên \(2\left(AC+BD\right)>AB+AD+BC+CD\)
\(\Leftrightarrow AC+BD>\dfrac{AB+AD+BC+CD}{2}\)
Xét ΔABD có BD<AB+AD
Xét ΔCBD có BD<BC+CD
Xét ΔABC có AC<AB+BC
Xét ΔADC có AC<AD+DC
Do đó: BD+BD+AC+AC<2(AB+AD+CD+BC)
\(\Leftrightarrow AC+BD< AB+AD+CD+BC\)(2)
Từ (1) và (2) ta suy ra ĐPCM
Gọi O là giao điểm của hai đường chéo AC và BD
* Trong ∆ OAB, ta có:
OA + OB > AB (bất đẳng thức tam giác) (1)
* Trong ∆ OCD, ta có:
OC + OD > CD (bất đẳng thức tam giác) (2)
Cộng từng vế (1) và (2):
OA + OB + OC + OD > AB + CD
⇒ AC + BD > AB + CD
. a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.
b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).
Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD
Theo cách đặt giao của AC, BD là O của bạn Khôi thì phần 1 có thể CM như sau:
Áp dụng công thức BĐT trong tam giác thì:
\(AD< AO+OD\)
\(BC< BO+OC\)
Cộng theo vế 2 BĐT trên:
\(AD+BC< AO+CO+BO+DO=AC+BD\)
Còn đoạn "Theo câu 1 thì AC < p và BD < p$ là không có cơ sở em nhé.
Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC, OCD và ODA.
Gọi O là giao điểm hai đường chéo AC, BD của tứ giác ABCD.
Trong các tam giác AOB Và COD theo bất đẳng thức tam giác ta lần lượt có:
OA + OB > AB
OC + OD > CD.
Cộng theo từng vế hai bất đẳng thức trên ta được:
AB + BD > AB + CD