So sánh: C = 1.2.3.4....2011
D = 1007/2 . 1008/2 . 1009/2 ...... 2012/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1-1/2+1/3-1/4+1/5-1/6+...+1/2011-1/2012 / 1006-1006/1007-1007/1008-1008/1009-...-2010/2011-2011/2012
Ta có: 20082 > 20082 -1 = 2007.2009 => 1007/1008<1008/1009
Ta có:\(\frac{1007}{1008}=1-\frac{1}{1008}\)
\(\frac{1008}{1009}=1-\frac{1}{1009}\)
mà \(\frac{1}{1008}>\frac{1}{1009}\)
=> \(1-\frac{1}{1008}< 1-\frac{1}{1009}\)
Hay \(\frac{1007}{1008}< \frac{1008}{1009}\)
Vậy .......
Chúc bạn hk tốt!!! nhớ k cho mình na
B=\(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}+\dfrac{1}{1007}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\)- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}\right)\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}+\dfrac{1}{1007}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\)-2\(\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)
=1-\(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{2012}+\dfrac{1}{2013}\)=S
( A-B)2013 =0
Chúc ban học tốt nhé...!
Ta có:\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
=\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1006}\right)\)
=\(\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\)
=>\(\left(\frac{A}{B}\right)^{2013}\)=(\(\frac{\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}}{\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}}^{ }\))2013=12013=1
link này nè bn!
https://olm.vn/hoi-dap/detail/103540952175.html
S-P= (1 - 1/2 + 1/3 - 1/4 +...+ 1/2011 - 1/2012 + 1/2013) - ( 1/1007 + 1/1008 +...+ 1/2012 + 1/2013 )
S-P= (1- 1/2 + ... + 1/1005 - 1/1006) - 2.(1/1008 + 1/1010 + 1/1012 +...+ 1/2012)
S-P= 1+1/2+1/3+...+1/1006 - 2.( 1/2 + 1/4 + 1/6 +...+ 1/2012)
S-P= 1 + 1/2 + 1/3 +...+ 1/1006 - ( 1+ 1/2 + 1/3 +...+ 1/1006 )
S-P= 0
(S-P)^2013 = 0
C = 1.2.3.4....2011
D = 1007/2 . 1008/2 . 1009/2.....2012/2
D = (1007.1008.1009.....2012) : (2.2.2.2........2) (có 2012 - 1007 + 1 = 1006 số 2 )
D = (1007.1008.1009....503 .2.2) : 21004
MÀ (4.503.1007.1008.....2011) < (1.2.3.....2011)
Vậy c > D