chứng minh 1/2<1/51+1/52+1/53+.......+1/99+1/100<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai tại vì:
Ta thấy từ: \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}\) mỗi số hạng đều lớn hơn \(\frac{1}{100}\)
Mà tổng trên có : ( 100 - 51 ) + 1 = 50 ( số hạng )
Nên:
\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}.50=\frac{50}{100}=\frac{1}{2}\)
Vậy : \(A>\frac{1}{2}\)
->1/51+1/52+...+1/100>1/100+1/100+...+1/100(50 lần 1/100) (50 là số số hạng từ 51 đến 100) =>1/100+1/100+...+1/100=50/100=1/2 =>1/51+1/52+...+1/100>1/2 (ĐPCM) ->1/51+1/52+...+1/100<1/51+1/51+...+1/51(50 lần 1/51) =>1/51+1/51+...+1/51=50/51<1 =>1/51+1/52+...+1/100<50/51<1=>1/51+1/52+...+1/100<1 (ĐPCM)
Ta có:\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+............+\frac{1}{100}\)
\(=\left(\frac{1}{51}+\frac{1}{52}+.........+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+........+\frac{1}{100}\right)\)
\(>\frac{1}{75}.25+\frac{1}{100}.25=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{1}{2}\)
\(\left(\frac{1}{51}+\frac{1}{52}+..........+\frac{1}{75}\right)+\left(\frac{1}{76}+........+\frac{1}{100}\right)\)
\(< \frac{1}{50}.25+\frac{1}{75}.25=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}< 1\)
\(\Rightarrowđpcm\)
Ta có :
S= 1/51 +1/52 +..+1/100
Vì 1/51>1/52>...>1/100
=> S >1/100 * 50 =1/2 (1)
Vì 1/100 <1/99<...<1/51<1/50
=> S < 1/50 * 50=1 (2)
Từ (1),(2) => 1/2 < S<1
P=1/2^2+1/2^3+...+1/2^2018
2P=1/2 +1/2^2 +...+1/2^2017
=> 2P-P= (1/2 +1/2^2 +...+1/2^2017)-(1/2^2+1/2^3+...+1/2^2018 )
=> P=1/2 -1/2^2018 <1/2 <3/4
Ta có: \(\frac{1}{51}>\frac{1}{100};\frac{1}{52}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{100}.50=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}\)
Ta có \(\frac{1}{51}< \frac{1}{50};\frac{1}{52}< \frac{1}{50};...;\frac{1}{100}< \frac{1}{50}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{50}.50=1\)
\(\Rightarrow S< 1\)
Ta có :
\(H=\frac{1}{51}+\frac{1}{52}+\frac{1}{52}+....+\frac{1}{100}\)
\(\Rightarrow H>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\)
\(\Rightarrow H>\frac{1}{100}.50\)
\(\Rightarrow H>\frac{1}{2}\)
Lại có :
\(H=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+.....+\frac{1}{100}\)
\(\Rightarrow H< \frac{1}{51}+\frac{1}{51}+\frac{1}{51}+........+\frac{1}{51}\)
\(\Rightarrow H< \frac{1}{51}.50\)
\(\Rightarrow H< \frac{50}{51}\)
\(\Rightarrow H< 1\)
Vậy \(\frac{1}{2}< H< 1\left(ĐPCM\right)\)
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\RightarrowĐPCM\)
Ta thấy:
\(\dfrac{1}{51}< \dfrac{1}{50}\)
\(\dfrac{1}{52}< \dfrac{1}{50}\)
...
\(\dfrac{1}{100}< \dfrac{1}{50}\)
\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}.50=1\)
\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< 1\left(1\right)\)
Lại có:
\(\dfrac{1}{51}>\dfrac{1}{100}\)
\(\dfrac{1}{52}>\dfrac{1}{100}\)
...
\(\dfrac{1}{100}=\dfrac{1}{100}\)
\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}>\dfrac{1}{100}.50=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}>\dfrac{1}{2}\left(2\right)\)
Từ (1),(2)\(\Rightarrow\)\(\dfrac{1}{2}< \dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< 1\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}.50=\frac{1}{2}\)
Vậy \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{2}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}<\frac{1}{50}+\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{1}{50}.50=1\)
Vậy \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}<1\)
Kết luận: \(\frac{1}{2}<\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}<1\)
\(\frac{1}{51}<\frac{1}{50},\frac{1}{52}<\frac{1}{50};...;\frac{1}{100}<\frac{1}{50}\)
-->\(\frac{1}{51}+\frac{1}{52}+..+\frac{1}{100}<50.\frac{1}{50}\)( tu 51 den 100 co 50 so hang)
-->\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}<1\)(1)
ta co
\(\frac{1}{100}<\frac{1}{51}\)
\(\frac{1}{100}<\frac{1}{52}\)
...
\(\frac{1}{100}<\frac{1}{99}\)
\(\frac{1}{100}=\frac{1}{100}\)
---> \(50.\frac{1}{100}<\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
-->\(\frac{1}{2}<\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\) (2_)
tu (1) va (2)==> dpcm