Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
{a22=a1.a3a32=a2.a4\Rightarrow{a2a3=a1a2a3a4=a2a3{a2a3=a1a2a3a4=a2a3⇒{a3a2=a2a1a4a3=a3a2\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}⇒a2a1=a3a2=a4a3
\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1}{a_2}.\frac{a_2}{a_3}=\frac{a_3}{a_4}=\frac{a_1}{a_4}\left(1\right)⇒a23a13=a33a23=a43a33=a2a1.a3a2=a4a3=a4a1(1)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(2\right)a23a13=a33a23=a43a33=a23+a33+a43a13+a23+a33(2)
Từ (1) và (2) \Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\left(đpcm\right)⇒a23+a33+a43a13+a23+a33=a4a1(đpcm)
Giả sử 100 số đó đôi một khác nhau
Không mất tính tổng quát giả sử 0<a1<a2<a3<...<a1000<a1<a2<a3<...<a100
Vậy a1≥1;a2≥2;....;a100≥100a1≥1;a2≥2;....;a100≥100suy ra 1/a1+1/a2+...+1/a100≤1+12+13+...+11001a1+1a2+...+1a100≤1+1/2+1/3+...+1/100
⇒1/a1+1/a2+...+1/a100<1+1/2+1/2+...+1/2(99 phân số 1/2)
⇒1/a1+1/a2+...+1/a100<1/2.(2+99)=1/2.101=101/2trái với giả thiết.
Vì vậy điều giả sử sai, ta có điều phải chứng minh