K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

Ta có \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\)

\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\)(1)

Tương tự ta chứng minh được \(\frac{b}{a+b}+\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{a+d}>1\)(2)

mà \(\frac{a}{a+b}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{b}{b+c}+\frac{d}{c+d}+\frac{c}{c+d}+\frac{a}{a+d}+\frac{d}{a+d}=4\)(3)

Từ (1) (2) (3) => \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\left(a;b;c;d\inℕ\right)\)

DD
16 tháng 7 2021

Câu hỏi của lep. - Toán lớp 8 - Học trực tuyến OLM

16 tháng 5 2022

Xét : \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)

 

        \(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)

 

Vì \(a\) là  số nguyên dương nên \(a,\left(a-1\right)\) là hai số tự nhiên liên tiếp . 

 

\(\Rightarrow a\left(a-1\right)\) chia hết cho 2. Tương tự ta có : \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2.

 

\(\Rightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn . 

 

Lại có : \(a^2+c^2=b^2+d^2\Rightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) là số chẵn .

 

Do đó : \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\inℕ^∗\))

 

Vậy : \(a+b+c+d\) là hợp số .

29 tháng 3

Xét : (�2+�2+�2+�2)−(�+�+�+�)

        =�(�−1)+�(�−1)+�(�−1)+�(�−1)

Vì  là  số nguyên dương nên �,(�−1) là hai số tự nhiên liên tiếp . 

⇒�(�−1) chia hết cho 2. Tương tự ta có : �(�−1);�(�−1);�(�−1) đều chia hết cho 2.

⇒�(�−1)+�(�−1)+�(�−1)+�(�−1) là số chẵn . 

Lại có : �2+�2=�2+�2⇒�2+�2+�2+�2=2(�2+�2) là số chẵn .

Do đó : �+�+�+� là số chẵn mà �+�+�+�>2 (Do �,�,�,�∈N∗)

Vậy : �+�+�+� là hợp số .

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

NV
16 tháng 3 2022

Sử dụng quy tắc đa thức: \(P\left(a\right)-P\left(b\right)\) chia hết \(a-b\) cho đa thức hệ số nguyên

Do a;b;c;d lẻ nên hiệu của chúng đều chẵn

\(P\left(c\right)-P\left(a\right)=4\Rightarrow4⋮c-a\Rightarrow\left[{}\begin{matrix}c-a=-2\\c-a=-4\end{matrix}\right.\)

Tương tự ta có \(\left[{}\begin{matrix}b-a=-2\\b-a=-4\end{matrix}\right.\)

Mà \(a>b>c\) \(\Rightarrow b-a>c-a\Rightarrow\left[{}\begin{matrix}b-a=-2\\c-a=-4\end{matrix}\right.\) 

\(\Rightarrow a;b;c\) là 3 số nguyên lẻ liên tiếp

Lại có \(P\left(b\right)-P\left(d\right)=4⋮b-d\Rightarrow b-d=\left\{-4;-2;2;4\right\}\)

Tương tự: \(c-d=\left\{-4;-2;2;4\right\}\) (1)

Do đã chứng minh được a; b và c là 2 số lẻ liên tiếp \(\Rightarrow c=b-2\) ; \(c=a-4\) (2)

- Nếu \(b-d=-4\Rightarrow c-d=b-2-d=-4-2=-6\) không thỏa mãn (1) (loại)

- Nếu \(b-d=-2\Rightarrow c-d=b-d-2=-4\) \(\Rightarrow c=d-4\)

\(\Rightarrow d=a\) theo (2) trái giả thiết a;b;c;d phân biệt (loại)

- Nếu \(b-d=2\Rightarrow c-d=b-d-2=0\Rightarrow c=d\) trái giả thiết c;d phân biệt (loại)

- Nếu \(b-d=4\Rightarrow c-d=b-d-2=2\)

\(\Rightarrow d\) là số lẻ liền trước của c

Vậy a;b;c;d là bốn số nguyên lẻ liên tiếp theo thứ tự \(a>b>c>d\)

16 tháng 3 2022

Ta có: a+b+c+d-(a+b+c+d) = a(a-1)+b(b-1)+c(c-1)+d(d-1) Vì a,b,c,d nguyên dương nên a(a-1), b(b-1), c(c-1), d(d-1) là các số nguyên dương liên tiếp => a(a-1),b(b-1),c(c-1),d(d-1) chia hết cho 2 => a(a-1)+b(b-1)+c(c-1)+d(d-1) chia hết cho 2 Hay a+b+c+d-(a+b+c+d) chia hết cho 2 <=> 2( a+b) - (a+b+c+d) chia hết cho 2 (Vì a+b=c+d) Vì 2( a+b) chia hết cho 2, a+b+c+d-(a+b+c+d) chia hết cho 2 => a+b+c+d chia hết cho 2=> a+b+c+d là số chẵn Lại có: a+b+c+d ≥ 4 (a,b,c,d nguyên dương) Do đó a+b+c+d là hợp số, đccm. (Vì là số chẵn và lớn hơn 4).