tính tổng
S=1/2*3 - 2/3*4 +...+ 99/100*101 - 100/101*102
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho mi sửa lại:
\(a) A = 1^2+2^3+3^4+...+2014^{2015} b) B = 101^2+102^2+...+199^2+200^2 c) C = 1^3+2^4+3^5+4^6+...+99^{101}+100^{102}\)
a)(100-101)+(102-103)+...+(998-999)+1000
=-1+(-1)+...+(-1)+1000
=(-1).900+1000
=-900+1000
=100
b)1-2+3-4+5-6+...+99-100
=(1-2)+(3-4)+(5-6)+...+(99-100)
=-1+(-1)+(-1)+...+(-1)
=(-1).50
=-50
1+2-3-4+5+6-7-8+.........-99-100+101+102
=1+(2-3-4+5)+(6-7-8+9)+........+(98-99-100+101)+102
=1+0+0+0+........+0+0+102
=103
Nhớ Thanks nha
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\left(\frac{100}{2}+1\right)+\left(\frac{99}{3}+1\right)+...+\left(\frac{1}{101}+1\right)+1}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{102}{2}+\frac{102}{3}+...+\frac{102}{101}+\frac{102}{102}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{102.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}+\frac{1}{102}\right)}\)
\(A=\frac{1}{102}\)
Điên lên lập ních Trưn Tấn Sang bây jo