Cho tam giác ABC có BM và CM là hai đường trung tuyến. Trên tia đối của tia MB lấy điểm E sao cho ME=MB. Trên tia đối của tia NC lấy điểm F sao cho NC=NF.
a/ chứng minh AE=AF
b/ chứng minh A,E,F thẳng hàng
c/ chứng minh EF//BC và EF=2BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Xét tam giác MAE và tam giác MCB có:
ME = MB (gt)
MA = MC (gt)
Góc M1 = góc M2 (đối đỉnh)
=> Tam giác MAE = Tam giác MCB (c.g.c)
2. Xét tứ giác AEBC có:
M là trung điểm BE (gt)
M là trung điểm AC (gt)
=> Tứ giác AEBC là hình bình hành
=> AE // BC và AE = BC (1)
Xét tứ giác FABC có:
N là trung điểm BA (gt)
N là trung điểm FC (gt)
=> Tứ giác FABC là hình bình hành
=> FA // BC và FA = BC (2)
Từ (1), (2) => AE = AF
a: ΔAHB vuông tại H
=>AH<AB
ΔAHC vuông tại H
=>AH<AC
=>AH+AH<AB+AC
=>2AH<AB+AC
=>\(AH< \dfrac{1}{2}\left(AB+AC\right)\)
b: Xét ΔABC có
BM,CN là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>BG=2GM và CG=2GN
=>BG=GE và CG=GF
=>G là trung điểm của BE và G là trung điểm của CF
Xét tứ giác BFEC có
G là trung điểm chung của BE và CF
=>BFEC là hình bình hành
=>EF=BC
a) Xét tam giác MAE và tam giác MCB
có AM= AC (GT)
BM = ME(GT)
góc AME = góc CMB ( đối đỉnh)
suy ra tam giác MAE = tam giác MCB (c.g.c) (1)
b) Từ (1) suy ra AE = BC ( hai cạnh tương ứng) (2)
Xét tam giác ANF và tam giác BNC
có AN = BN(GT)
góc ANF = góc BNC ( đối đỉnh)
NF=NC (GT)
suy ra tam giác ANF = tam giác BNC (c.g.c) (3)
suy ra AF = BC ( hai cạnh tương ứng ) (4)
Từ (2) và (4) suy ra AE=AF (5)
c) Từ (1) suy ra góc MAE = góc C
Từ (3) suy ra góc FAB = góc B
mà góc BAC + góc B + góc C = 1800
suy ra góc BAC + góc MAE+góc FAB = 1800
hay góc EAF = 1800
suy ra ba điểm A, E, F thẳng hàng
a) Xét ΔAME và ΔCMB có
AM=CM(M là trung điểm của AC)
\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)
ME=MB(gt)
Do đó: ΔAME=ΔCMB(c-g-c)
⇒AE=BC(hai cạnh tương ứng)
b) Ta có: ΔAME=ΔCMB(cmt)
nên \(\widehat{EAM}=\widehat{BCM}\)(hai góc tương ứng)
mà \(\widehat{EAM}\) và \(\widehat{BCM}\) là hai góc ở vị trí so le trong
nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)
c) Xét ΔANF và ΔBNC có
AN=BN(N là trung điểm của AB)
\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)
NF=NC(gt)
Do đó: ΔANF=ΔBNC(c-g-c)
⇒AF=BC(hai cạnh tương ứng)
Ta có: ΔANF=ΔBNC(cmt)
nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)
mà \(\widehat{AFN}\) và \(\widehat{BCN}\) là hai góc ở vị trí so le trong
nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)
mà AE//BC(cmt)
và AF,AE có điểm chung là A
nên F,A,E thẳng hàng(1)
Ta có: AE=BC(cmt)
mà AF=BC(cmt)
nên AE=AF(2)
Từ (1) và (2) suy ra A là trung điểm của EF(đpcm)
a) Xét ΔAME và ΔCMB có
MA=MC(gt)
\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)
ME=MB(gt)
Do đó: ΔAME=ΔCMB(c-g-c)
Suy ra: AE=CB(hai cạnh tương ứng)(1)
Xét ΔANF và ΔBNC có
NA=NB(gt)
\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)
NF=NC(gt)
Do đó: ΔANF=ΔBNC(c-g-c)
Suy ra: AF=BC(Hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra AE=AF(đpcm)
b) Ta có: ΔAME=ΔCMB(cmt)
nên \(\widehat{MAE}=\widehat{MCB}\)(hai góc tương ứng)
mà hai góc này là hai góc ở vị trí so le trong
nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: ΔANF=ΔBNC(cmt)
nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)
mà hai góc này là hai góc ở vị trí so le trong
nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: AE//BC(cmt)
mà AF//BC(cmt)
và AE,AF có điểm chung là A
nên A,E,F thẳng hàng(đpcm)