tìm x và y biết x+y=3.(x-y)+2x:y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(y\ne0\)\(x+y=3\left(x-y\right)=\frac{2x}{y}\)
\(3x-3y-x-y-\frac{2x}{y}=0\)
\(2x-2y=\frac{2x}{y}\)
\(x-y=\frac{x}{y}\)
Làm nốt
Từ x + y = 3x - 3y = 2x : y (1)
=> x + y = 3x - 3y
=> x + y - 3x + 3y = 0
=> - 2x + 4y = 0
=> 4y - 2x = 0
=> 2(2y - x) = 0
=> 2y = x
Từ (1) => x + y = 2x : y
<=> x + y = 2.2y : y (Vì x = 2y)
=> x + y = 4 (2)
Từ (1) => 3x - 3y = 2x : y
=> 3(x - y) = 2.2y : y
=> x - y = 4/3 (3)
Từ (2) ; (3) => x = (4 + 4/3) : 2 = 8/3
=> y = 8/3 - 4/3 = 4/3
a)Từ \(x\cdot2y=\dfrac{2x}{y}\Rightarrow2x=x\cdot2y^2\)
Do \(x,y\ne 0\) nên \(2=2y^2\Rightarrow y^2=1\Rightarrow y=\pm1\)
*)Xét \(y=1\Rightarrow3x-2=2x\Rightarrow x=2\)
*)Xét \(y=-1\Rightarrow3x+2=-2x\Rightarrow x=-\dfrac{2}{5}\)
b)\(\left|4x-3\right|+\left|3xy-5\right|=0\)
Dễ thấy: \(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|3xy-5\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|4x-3\right|+\left|3xy-5\right|\ge0\)
Xảy ra khi \(\left\{{}\begin{matrix}\left|4x-3\right|=0\\\left|3xy-5\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}4x-3=0\\3xy-5=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\3xy-5=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=\dfrac{20}{9}\end{matrix}\right.\)
ko đúng rồi mình xin lỗi nha, đề bài là:x+y=3x-3y=2x:y
":" là dấu chia nha bạn
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30