K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}\right)\)

a) ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\notin\left\{1;4\right\}\end{matrix}\right.\)

Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a+3\sqrt{a}+2-a+3\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{6\sqrt{a}}\)

\(=\dfrac{a-4}{6a\left(\sqrt{a}-1\right)}\)

c) Thay \(a=9-4\sqrt{5}\) vào Q, ta được:

\(Q=\dfrac{5-4\sqrt{5}}{6\left(9-4\sqrt{5}\right)\left(\sqrt{5}-3\right)}\)

\(=\dfrac{5-4\sqrt{5}}{6\left(9\sqrt{5}-27-20+12\sqrt{5}\right)}\)

\(=\dfrac{5-4\sqrt{5}}{6\left(21\sqrt{5}-47\right)}\)

\(=\dfrac{\left(5-4\sqrt{5}\right)\left(21\sqrt{5}+47\right)}{-24}\)

\(=\dfrac{105\sqrt{5}+235-420-188\sqrt{5}}{-24}\)

\(=\dfrac{-83\sqrt{5}-185}{-24}=\dfrac{83\sqrt{5}+185}{24}\)

10 tháng 7 2021

cảm ơn ạ!

 

a) ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

b) Ta có: \(M=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\dfrac{a-1}{2\sqrt{a}}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{\sqrt{a}\left[\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2\right]}{2\sqrt{a}}\)

\(=\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{2}\)

\(=\dfrac{-4\sqrt{a}}{2}=-2\sqrt{a}\)

c) Để M=-4 thì \(-2\sqrt{a}=-4\)

\(\Leftrightarrow\sqrt{a}=2\)

hay a=4(thỏa ĐK)

30 tháng 1 2022

a) ĐKXĐ: \(a\ge0;a\ne1\)

\(P=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)

\(=\left[\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right]\left[\dfrac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}+a\right)}{1+\sqrt{a}}\right]\)

\(=\left(1+2\sqrt{a}+a\right)\left(1-2\sqrt{a}+a\right)\)

\(=\left(1-a\right)^2\)

b) Để \(P< 7-4\sqrt{3}\)

\(\Rightarrow\left(1-a\right)^2< 7-4\sqrt{3}\)

\(\Leftrightarrow\left|1-a\right|< \left(2-\sqrt{3}\right)^2\)

\(\Leftrightarrow\sqrt{3}-2< a-1< 2-\sqrt{3}\)

\(\Leftrightarrow\sqrt{3}-1< a< 3-\sqrt{3}\)

Vậy \(\sqrt{3}-1< a< 3-\sqrt{3}\) thì \(P< 7-4\sqrt{3}\)

30 tháng 1 2022

undefined

17 tháng 12 2023

a) ĐKXD: \(\left\{{}\begin{matrix}a>0\\a\ne1\\a\ne4\end{matrix}\right.\)

b) Với \(a>0;a\ne1;a\ne4\), ta có:

\(B=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ =\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

c)\(B\le\dfrac{1}{3}\rightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}\le\dfrac{1}{3}\rightarrow\dfrac{-2}{\sqrt{a}}\le0\) (đúng với mọi a thoả ĐKXĐ).

18 tháng 12 2023

a, ĐKXĐ: 

\(\left\{{}\begin{matrix}\left|a\right|>1^2\\\left|a\right|>0\\\left|a\right|>2^2\end{matrix}\right.\Leftrightarrow a>4\)

b,

 \(B=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ B=\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left[\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)\right]}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ B=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(a-1\right)-\left(a-4\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ B=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}\\ B=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

\(c,B\le\dfrac{1}{3}\\ \Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}\le\dfrac{1}{3}\\ \Leftrightarrow3\left(\sqrt{a}-2\right)\le3\sqrt{a}\\ \Leftrightarrow\sqrt{a}-2\le\sqrt{a}\\ \Leftrightarrow\sqrt{a}-\sqrt{a}\le2\\ \Leftrightarrow0\le2\left(luôn.đúng\right)\)

Vậy: Với a>4 thì \(B\le\dfrac{1}{3}\)

22 tháng 12 2020

Bài 1: 

a) Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\left(\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

b) Để Q dương thì \(\dfrac{\sqrt{a}-2}{3\sqrt{a}}>0\)

mà \(3\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ

nên \(\sqrt{a}-2>0\)

\(\Leftrightarrow\sqrt{a}>2\)

hay a>4

Kết hợp ĐKXĐ,ta được: a>4

Vậy: Để Q dương thì a>4

20 tháng 10 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a< >1\end{matrix}\right.\)

\(P=\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\cdot\left(\dfrac{3\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}+2}{\sqrt{a}+1}\right)\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{3\sqrt{a}\left(\sqrt{a}+1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}{a-1}\)

\(=\dfrac{a+\sqrt{a}+1-\left(a-\sqrt{a}+1\right)}{\sqrt{a}}+\dfrac{3a+3\sqrt{a}-a-\sqrt{a}+2}{\sqrt{a}}\)

\(=\dfrac{2\sqrt{a}+2a+2\sqrt{a}+2}{\sqrt{a}}=\dfrac{2\left(\sqrt{a}+1\right)^2}{\sqrt{a}}\)

b: \(P=\sqrt{a}+7\)

=>\(2\left(a+2\sqrt{a}+1\right)=a+7\sqrt{a}\)

=>\(2a+4\sqrt{a}+2-a-7\sqrt{a}=0\)

=>\(a-3\sqrt{a}+2=0\)

=>\(\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)=0\)

=>\(\left[{}\begin{matrix}a=1\left(loại\right)\\a=4\left(nhận\right)\end{matrix}\right.\)

c: \(P-6=\dfrac{2\left(\sqrt{a}+1\right)^2-6\sqrt{a}}{\sqrt{a}}\)

\(=\dfrac{2a+4\sqrt{a}+2-6\sqrt{a}}{\sqrt{a}}=\dfrac{2a-2\sqrt{a}+2}{\sqrt{a}}\)

\(=\dfrac{2\left(a-\sqrt{a}+\dfrac{1}{4}+\dfrac{3}{4}\right)}{\sqrt{a}}=\dfrac{2\left[\left(\sqrt{a}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}{\sqrt{a}}>0\)

=>P>6

13 tháng 8 2021

a,\(ĐK:x>0,x\ne1,x\ne4\)

\(A=\left[\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left[\dfrac{x-1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right]\)

\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b,\(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)

\(=>A=\dfrac{\sqrt{2}-3}{3\sqrt{2}-3}\)

13 tháng 8 2021

a) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-1>0\\\sqrt{x}-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>1\\x>4\end{matrix}\right.\) \(\Leftrightarrow x>4\)

\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(=\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\) 

\(=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b) Ta có \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(2-1\right)^2=1\)

Thay \(x=1\) vào \(A\), ta được:

\(A=\dfrac{\sqrt{1}-2}{3\sqrt{1}}=\dfrac{1-2}{3}=-\dfrac{1}{3}\)

24 tháng 6 2021

`P=(sqrtx/(sqrtx-1)+sqrtx/(x-1)):(2/x-(2-x)/(xsqrtx+x))`

`đk:x>0,x ne 1`

`P=((x+sqrtx+sqrtx)/(x-1)):(2/x+(x-2)/(x(sqrtx+1)))`

`=(x+2sqrtx)/(x-1):((2sqrtx+2+x-2)/(x(sqrtx+1)))`

`=(x+2sqrtx)/(x-1):(x+2sqrtx)/(x(sqrtx+1))`

`=(x+2sqrtx)/(x-1)*(x(sqrtx+1))/(x+2sqrtx)`

`=(x(sqrtx+1))/((sqrtx-1)(sqrtx+1))`

`=x/(sqrtx-1)`

`b)P>2`

`<=>x/(sqrtx-1)-2>0`

`<=>(x-2sqrtx+2)/(sqrtx-1)>0`

`<=>((sqrtx-1)^2+1)/(sqrtx-1)>0`

`<=>sqrtx-1>0`

`<=>x>1`

24 tháng 6 2021

a) đk: x>0;x khác 1;0

P = \(\left[\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]:\left[\dfrac{2}{x}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right]\)

\(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\dfrac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\)

\(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\)

\(\dfrac{x}{\sqrt{x}-1}\)

b) Để P > 2

<=> \(\dfrac{x}{\sqrt{x}-1}-2>0\)

<=> \(\dfrac{x-2\sqrt{x}+2}{\sqrt{x}-1}>0\)

<=> \(\dfrac{\left(\sqrt{x}-1\right)^2+1}{\sqrt{x}-1}>0\)

<=> \(\sqrt{x}-1>0\)

<=> x > 1