Tìm nghiệm của đa thức -6x^2+3x+3
Tìm GTNN của 4x^2+4x+2022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) dễ tự làm
b) A(x) có bậc 6
hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3
B(x) có bậc 6
hệ số: 2 ; -5 ; 3 ; 4 ; 7
c) bó tay
d) cx bó tay
a)Ta có :\(3x^2-6x=0\)
\(\Rightarrow x\left(3x-6\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\3x-6=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\3x=6\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=2\end{cases}}\)
b)Ta có :\(4x^2-3x-1=0\)
\(\Rightarrow4x^2-4x+x-1=0\)
\(\Rightarrow4x\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(4x+1\right)\left(x-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}4x+1=0\\x-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{4}\\x=1\end{cases}}\)
Vậy đa thức trên có 2 nghiệm là :-1/4 và 1
Vậy đa thức trên có 2 nghiệm là 0 và 2
\(A=4x^2-5x^3+3x-2x^2-7+x\\ =2x^2-5x^3+4x-7\)
Vậy bậc của đa thức A là 3
\(B=6x^2-5x^3-2x-4x^2-7+x\\ =2x^2-5x^3-x-7\)
Vậc bậc của đa thức B là 3
1) \(f\left(x\right)=6x^2-15x+4\)
\(\Rightarrow f\left(x\right)=6\left(x^2-\dfrac{5}{3}x\right)+4\)
\(\Rightarrow f\left(x\right)=6\left(x^2-\dfrac{5}{3}x+\dfrac{25}{36}-\dfrac{25}{36}\right)+4\)
\(\Rightarrow f\left(x\right)=6\left(x^2-\dfrac{5}{3}x+\dfrac{25}{36}\right)+4-\dfrac{25}{6}\)
\(\Rightarrow f\left(x\right)=6\left(x-\dfrac{5}{6}\right)^2-\dfrac{1}{6}\ge-\dfrac{1}{6}\left(6\left(x-\dfrac{5}{6}\right)^2\ge0,\forall x\right)\)
\(\Rightarrow GTNN\left(f\left(x\right)\right)=-\dfrac{1}{6}\left(tạix=\dfrac{5}{6}\right)\)
2) \(f\left(x\right)=4x^2-13x+5\)
\(\Rightarrow f\left(x\right)=4\left(x^2-\dfrac{13}{4}x\right)+5\)
\(\Rightarrow f\left(x\right)=4\left(x^2-\dfrac{13}{4}x+\dfrac{169}{64}-\dfrac{169}{64}\right)+5\)
\(\Rightarrow f\left(x\right)=4\left(x^2-\dfrac{13}{4}x+\dfrac{169}{64}\right)+5-\dfrac{169}{16}\)
\(\Rightarrow f\left(x\right)=4\left(x-\dfrac{13}{8}\right)^2-\dfrac{89}{16}\ge-\dfrac{89}{16}\left(4\left(x-\dfrac{13}{8}\right)^2\ge0,\forall x\right)\)
\(\Rightarrow GTNN\left(f\left(x\right)\right)=-\dfrac{89}{16}\left(tạix=\dfrac{13}{8}\right)\)
R= x^2+x+8x+8=(x+8)(x+1)=0
x+8=0 hoặc x+1=0
x=-8 hoặc x=-1
Vậy......
hok tốt
\(A\left(x\right)=10x^3-3x-4x^2-6x^3+\dfrac{3}{4}x+3x^2-2\)
\(=4x^3-x^2-\dfrac{9}{4}x-2\)
Bậc của đa thức là bậc có số mũ cao nhất.
\(\Rightarrow\)Đa thức này có bậc 4.
Hệ số cao nhất là 4.
Hệ số tự do là -2.
a, \(A\left(x\right)=x^2-2x\)
Đa thức A(x) có nghiệm khi:
\(x^2-2x=0\)
\(\rightarrow x\left(x-2\right)=0\)
\(\rightarrow\left[{}\begin{matrix}x=0\\x-2=0\Rightarrow x=2\end{matrix}\right.\)
Vậy x = 0, x = 2 là nghiệm của đa thức A(x)
b, \(B\left(x\right)=x^2-3x\)
Đa thức B(x) có nghiệm khi:
\(x^2-3x=0\)
\(\rightarrow x\left(x-3\right)=0\)
\(\rightarrow\left[{}\begin{matrix}x=0\\x-3=0\Rightarrow x=3\end{matrix}\right.\)
Vậy x = 0, x = 3 là nghiệm của đa thức B(x)
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4
\(4x^2+4x+2022=4x^2+4x+1+2021=\left(2x+1\right)^2+2021\ge2021\)
dấu "=" xảy ra \(< =>2x+1=0< =>x=\dfrac{-1}{2}\)
Đặt \(-6x^2+3x+3=0\)
\(\Leftrightarrow-6x^2+6x-3x+3=0\)
\(\Leftrightarrow-6x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)