- Bai1:tìm tất cả các đa thức hệ số nguyen f(x) thỏa mãn 16f(x2) = [f(2x)]2 với mọi x thuộc R
- Bài 2: Cho đa thức f(x) bậc lớn hơn 1; hệ số nguyên, (m;n) =1.
- Chứng minh: f(m+n) chia hết cho mn <=> f(m) chia hết cho n và f(n) chia hết cho m
- Bài 3: Cho f(x) và h(x) hệ số nguyên thỏa mãn : g(x3) + xh(x3) chia hết cho x2 + x+1. Chứng minh g(x) và h(x) chia hết cho x - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số hạng có bậc cao nhất của \(f\left(x\right)\) là \(a_n.x^n\)
\(\Rightarrow\) Số hạng bậc cao nhất của \(16f\left(x^2\right)\) là \(16.\left(a_nx^n\right)^2=16a_n^2.x^{2n}\)
Số hạng bậc cao nhất của \(f^2\left(2x\right)\) là: \(\left(a_n.2x^n\right)^2=4a_n^2.x^{2n}\)
Đồng nhất hệ số 2 vế ta được: \(16a_n^2=4a_n^2\Rightarrow a_n=0\)
Hay mọi số hạng chứa x của đa thức đã cho đều có hệ số bằng 0
\(\Rightarrow\) Đa thức đã cho là đa thức hằng
Hay \(f\left(x\right)=k\) với mọi x
Thay vào đề bài: \(16k=k^2\Rightarrow\left[{}\begin{matrix}k=0\\k=16\end{matrix}\right.\)
Vậy có 2 đa thức thỏa mãn: \(\left[{}\begin{matrix}f\left(x\right)\equiv0\\f\left(x\right)\equiv16\end{matrix}\right.\)
\(f\left(x\right)\) chia \(x+1\) dư -15 \(\Rightarrow f\left(-1\right)=-15\Rightarrow-a+b=-16\)
\(f\left(x\right)\) chia \(x-3\) dư 45 \(\Rightarrow f\left(3\right)=45\Rightarrow3a+b=0\)
\(\Rightarrow\left\{{}\begin{matrix}-a+b=-16\\3a+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-12\end{matrix}\right.\)
\(f\left(x\right)=x^4-x^3-x^2+4x-12=\left(x^2-4\right)\left(x^2-x+3\right)\)
\(f\left(x\right)=0\Leftrightarrow x^2-4=0\Rightarrow x=\pm2\)
2f(1/2)-1/2f(2)=1/4 và 2f(2)-2f(1/2)=4
=>f(2)=17/6
2f(1/3)-1/3*f(3)=1/9 và 2*f(3)-3*f(1/3)=9
=>f(1/3)=29/27
Đặt g(x)= p(x)- x^2 -2
Thay x =1 vào biểu thức trên ta có
g(1)= p(1)-3
Mà p(1)=3 => g(1)=0
thay x=3 vào biểu thức trên ta có
g(3)= p(3)- 3^2 -2
g(3)= 0
thay x=5 vào biểu thức trên ta có:
g(5)=0
=> x=1;x=3;x=5 là các nghiệm của g(x)
=> g(x)= (x-1)(x-3)(x-5)(x+a)
Mà p(x) = g(x)+x^2+2
=>p(x)= (x-1)(x-3)(x-5)(x+a)+ x^2 +2
=>p(-2)= (-2-1)(-2-3)(-2-5)(-2+a)+ (-2)^2 +2
=>p(-2)= 216-105a
7p(6)=896+105a
=> 7p(6)+ p(-2)= 1112
Đăng mấy bài này trên đây khó nhận được đáp án lắm! Nên đăng trên một số diễn đàn nhiều pro như:
Diễn đàn Toán học
Diễn Đàn MathScope
.......
Bài 1.
+TH1: Đa thức có bậc là 0
\(f\left(x\right)=a\text{ }\left(a\in R\right)\forall x\in R\)
Theo đề ra: \(16a^2=a^2\Rightarrow a=0\)
Vậy \(f\left(x\right)=0\forall x\in R\)
+TH2: Đa thức có bậc lớn hơn hoặc bằng 1.
Giả sử đa thức có bậc n.
Gọi hệ số cao nhất của đa thức là \(a_n\text{ }\left(a_n\ne0\right)\)
Từ giả thiết, suy ra: \(16a_n^2=\left(2a_n\right)^2\Leftrightarrow16a_n^2=4a_n^2\Leftrightarrow a_n=0\text{ (vô lí)}\)
Vậy điều giả sử sai, hay không có đa thức nào thỏa mãn.
Vậy chỉ có \(f\left(x\right)=0\forall x\in R\) thỏa mãn để bài.