K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: ACEF là hình bình hành(gt)

nên AF//EC và AF=EC(Hai cạnh đối trong hình bình hành ACEF)

mà K\(\in\)EC và CE=CK(C là trung điểm của EK)

nên AF//CK và AF=CK

Xét tứ giác AFCK có 

AF//CK(cmt)

AF=CF(cmt)

Do đó: AFCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: Hai đường chéo AC và FK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)(1)

Ta có: ABCD là hình thoi(gt)

nên Hai đường chéo AC và BD vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)(2)

Từ (1) và (2) suy ra FK,BD,CA đồng quy tại một điểm(đpcm)

c) Ta có: BA=BC(ABCD là hình thoi)

mà AB=EC(gt)

và \(EC=\dfrac{1}{2}EK\)(C là trung điểm của EK)

nên \(BC=\dfrac{1}{2}EK\)

Xét ΔBEK có 

BC là đường trung tuyến ứng với cạnh EK(C là trung điểm của EK)

\(BC=\dfrac{1}{2}EK\)(cmt)

Do đó: ΔBEK vuông tại B(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)

9 tháng 7 2021

vậy còn câu d?

10 tháng 10 2016

 Bài 1 :

a. AB//CD  (ABCD là hình bình hành)                                                                                                                                              M thuộc AB                                                                                                                                                                                  N thuộc CD                                                                                                                                                                              => BM // DN

Xét tứ giác AMCN có:

MB=DN (gt) 

BM// DN

=> tứ giác AMCN là hình bình hành

b. Gọi giao điểm của AC và BD là O

=> O là trung điểm của AC và BD (tính chất hình bình hành) 

 Hình bình hành MBND có

O là trung điểm của BD

MN là đường chéo hình bình hành MBND

O là trung điểm MM

=> MN đi qua O

=> AC,BD,MN đồng quy tại một điểm

c.

10 tháng 10 2016

Bài 2 :

a. AB = CD (ABCD là hình bình hành) 

Mà AB = BE (A đối xứng E qua B) 

=> CD=BE 

AB // CD (ABCD là hình bình hành) 

Mà E thuộc AC

=> CD//BE 

Xét tứ giác DBEC:

CD=BE (CM) 

CD//BE (CM) 

=> DBEC là hình bình hành

b.