Thực hiện phép tính rút gọn biểu thức:
\(\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-2\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{2}\left(\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\right)\)
\(=\sqrt{2\cdot\left(4+\sqrt{7}\right)}+\sqrt{2\cdot\left(4-\sqrt{7}\right)}\)
\(=\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}\right)^2+2\cdot\sqrt{7}\cdot1+1^2}+\sqrt{\left(\sqrt{7}\right)^2-2\cdot\sqrt{7}\cdot1+1^2}\)
\(=\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=\left|\sqrt{7}+1\right|+\left|\sqrt{7}-1\right|\)
\(=\sqrt{7}+1+\sqrt{7}-1\)
\(=2\sqrt{7}\)
b) \(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
\(=\dfrac{\sqrt{2}\cdot\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2\cdot\left(2-\sqrt{3}\right)}-\sqrt{2\cdot\left(2+\sqrt{3}\right)}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}-\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)
\(=\dfrac{\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{ }\)
\(=-\dfrac{2}{\sqrt{2}}\)
\(=-\sqrt{2}\)
a: \(=\dfrac{2\sqrt{2}+3+2\sqrt{2}-3}{8-9}\)
\(=\dfrac{4\sqrt{2}}{-1}=-4\sqrt{2}\)
b: \(=\dfrac{\sqrt{2}\left(2\sqrt{2}-\sqrt{7}\right)+\sqrt{2}\left(2\sqrt{2}+\sqrt{7}\right)}{8-7}\)
\(=4-\sqrt{14}+4+\sqrt{14}=8\)
c: \(=\dfrac{2+\sqrt{5}-2\left(2-\sqrt{5}\right)}{-1}=\dfrac{2+\sqrt{5}-4+2\sqrt{5}}{-1}\)
\(=-3\sqrt{5}+2\)
a: \(=\dfrac{\sqrt{2}\left(2\sqrt{2}+3\right)+2\sqrt{2}-3}{-1}\)
\(=\dfrac{4+3\sqrt{2}+2\sqrt{2}-3}{-1}=-1-5\sqrt{2}\)
b: \(=\dfrac{1}{\sqrt{10}+\sqrt{6}}-\dfrac{1}{\sqrt{10}-\sqrt{6}}\)
\(=\dfrac{\sqrt{10}-\sqrt{6}-\sqrt{10}-\sqrt{6}}{4}=\dfrac{-2\sqrt{6}}{4}=-\dfrac{\sqrt{6}}{2}\)
c: \(\dfrac{-2}{3\sqrt{8}}+\dfrac{1}{3-2\sqrt{2}}\)
\(=\dfrac{-2\left(3-2\sqrt{2}\right)+6\sqrt{2}}{6\sqrt{2}\left(3-2\sqrt{2}\right)}=\dfrac{-6+4\sqrt{2}+6\sqrt{2}}{6\sqrt{2}\left(3-2\sqrt{2}\right)}\)
\(=\dfrac{10\sqrt{2}-6}{6\sqrt{2}\left(3-2\sqrt{2}\right)}=\dfrac{10-3\sqrt{2}}{6\left(3-2\sqrt{2}\right)}=\dfrac{18+11\sqrt{2}}{6}\)
Lời giải:
a.
\(=\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}+\frac{4(\sqrt{5}-1)}{(\sqrt{5}-1)(\sqrt{5}+1)}=\frac{\sqrt{5}+2}{5-2^2}+\frac{4(\sqrt{5}-1)}{5-1}\)
$=\sqrt{5}+2+(\sqrt{5}-1)=2\sqrt{5}+1$
b.
$=\frac{4(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}+\frac{7(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}-2\sqrt{3}$
$=\frac{4(\sqrt{3}+1)}{2}+\frac{7(3+\sqrt{2})}{1}-2\sqrt{3}$
$=2(\sqrt{3}+1)+7(3+\sqrt{2})-2\sqrt{3}$
$=23+7\sqrt{2}$
c.
$=(\frac{4(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})}-\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}).\frac{7(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}$
$=[(3+\sqrt{5})-(\sqrt{5}+2)].(3+\sqrt{2})$
$=1(3+\sqrt{2})=3+\sqrt{2}$
a: \(=\left(\sqrt{3}-2\right)\cdot\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\)
=3-4=-1
b: \(=\sqrt{6+4\sqrt{2}}-\sqrt{11-2\sqrt{18}}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=2+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}-1\)
c: \(=\sqrt{\left(2\sqrt{5}-1\right)^2}+\sqrt{\left(2\sqrt{5}+1\right)^2}\)
\(=2\sqrt{5}-1+2\sqrt{5}+1\)
\(=4\sqrt{5}\)
Lời giải:
a. $=|3+\sqrt{2}|-|3-2\sqrt{2}|=(3+\sqrt{2})-(3-2\sqrt{2})$
$=3\sqrt{2}$
b. $=|\sqrt{7}-2\sqrt{2}|-|\sqrt{7}+2\sqrt{2}|$
$=(2\sqrt{2}-\sqrt{7})-(\sqrt{7}+2\sqrt{2})$
$=-2\sqrt{7}$
c.
$=|3+\sqrt{5}|+|3-\sqrt{5}|=(3+\sqrt{5})+(3-\sqrt{5})=6$
d.
$=|2-\sqrt{3}|-|2+\sqrt{3}|=(2-\sqrt{3})-(2+\sqrt{3})=-2\sqrt{3}$
Lời giải:
a.
$=2\sqrt{5}-9\sqrt{5}-2\sqrt{5}=(2-9-2)\sqrt{5}=-9\sqrt{5}$
b.
$=36\sqrt{6}-2\sqrt{6}+6\sqrt{6}=(36-2+6)\sqrt{6}=40\sqrt{6}$
a) \(P=\dfrac{\sqrt{3}+\sqrt{6}}{1+\sqrt{2}}=\dfrac{\left(\sqrt{3}+\sqrt{6}\right)\left(1-\sqrt{2}\right)}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{3}-\sqrt{6}+\sqrt{6}-\sqrt{12}}{1-2}=\sqrt{12}-\sqrt{3}\)
b) \(Q=\left(\sqrt{75}-\dfrac{3}{2}:\sqrt{3}-\sqrt{48}\right)\cdot\sqrt{\dfrac{16}{3}}\)
\(=\left(5\sqrt{3}-\dfrac{3}{2}\cdot\dfrac{1}{\sqrt{3}}-4\sqrt{3}\right)\cdot\dfrac{4}{\sqrt{3}}\)
\(=\sqrt{3}\left(5-\dfrac{1}{2}-4\right)\cdot\dfrac{4}{\sqrt{3}}\)
\(=\left(1-\dfrac{1}{2}\right)\cdot4=2\)
\(=\frac{\sqrt{8}-\sqrt{7}}{\left(\sqrt{8}-\sqrt{7}\right)\left(\sqrt{8}+\sqrt{7}\right)}+5\sqrt{7}-2\sqrt{2}\)
\(=\frac{2\sqrt{2}-\sqrt{7}}{8-7}+5\sqrt{7}-2\sqrt{2}\)
\(=2\sqrt{2}-\sqrt{7}+5\sqrt{7}-2\sqrt{2}=4\sqrt{7}\)