K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2015

Đặt \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)\(\left(a_i\in Z\right)\)

Ta có: \(f\left(15\right)=a_n.15^n+a_{n-1}.15^{n-1}+...+a_1.15+a_0=9\)

\(f\left(7\right)=a_n.7^n+...+a_1.7+a_0=5\)

\(\Rightarrow\left(15^n-7^n\right)a_n+\left(15^{n-1}-7^{n-1}\right).a_{n-1}+...+\left(15-7\right)a_1=9-5\)

Mà \(15^k-7^k=\left(15-7\right)\left(15^{k-1}+15^{k-2}.7+...+15^i.7^{k-1-i}+..+15.7^{k-2}+7^{k-1}\right)=8X_k\)

\(\left(X_K\in Z\right)\)

\(\Rightarrow8X_n.a_n+8X_{n-1}.a_{n-1}+...+8a_1=4\)

\(\Rightarrow X_na_n+X_{n-1}a_{n-1}+...+X_1a_1=\frac{1}{2}\text{ (vô lí do }X_k,\text{ }a_k\in Z\text{)}\)

Vậy không tồn tại đa thức hệ số nguyên thỏa f(7) = 5; f(15) = 9.

16 tháng 1 2016

Toan lop 7 ma sao kho the?!!!!! Minh bo tay!

5 tháng 3 2017

\(y=f\left(x\right)=\frac{27-2x}{12-x}=\frac{3+24-2x}{12-x}=\frac{3+2\left(12-x\right)}{12-x}=2+\frac{3}{12-x}\)

Để \(f\left(x\right)=2+\frac{3}{12-x}\) đạt GTLN <=> \(\frac{3}{12-x}\) đạt GTLN

=> 12 - x là số nguyên dương nhỏ nhất 

=> 12 - x = 1 => x = 11

Vậy GTLN của hàm số đó là 5 tại x = 11

Để \(f\left(x\right)=2+\frac{3}{12-x}\) đạt GTNN <=> \(\frac{3}{12-x}\)đạt GTNN

=> 12 - x là số nguyên âm lớn nhất

=> 12 - x = - 1 => x = 13

Vậy \(y_{min}=-1\Leftrightarrow x=13\)