Chứng tỏ rằng số abcabc là bội của 7, 11 va 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abab=ab.100+ab=ab.101 chia hết cho 101 nên là bội của 101
b) aaabbb=aaa.1000+bbb=a.111.1000+b.111=111(1000a+b) chia hết cho 37 ( vì 111 chia hết cho 37)
a)\(abab=ab\cdot100+ab\cdot1=ab\cdot101\)
Vì \(101⋮101\Rightarrow ab\cdot101⋮101\Rightarrow abab⋮101\)
=>abab là bội của 101
b)\(aaabbb=111000\cdot a+b\cdot111\)
Mà \(111000⋮37\)và\(111⋮37\)
\(\Rightarrow aaabbb⋮37\)
=>37 là ước aaabbb
abba = 1000a + 100b + 10b + a = 1001a + 110b
= 11(91a + 10b) ⋮ 11.
a vừa là ước vừa là bội của b thì chắc chắn |a|=b hay a=b hoặc a=-b
có thể chứng minh đơn giản như sau: giả sử a= bx và b=ay ( với x ; y là 2 số nguyên)
thế b=ay vào a=bx ta được: a= axy => xy=1 vì x và y nguyên nên
x=1 và y=1 hoặc x=-1 và y=-1 thay x và y vào điều giả sử ta được a=b hoặc a=-b
\(\overline{ababab}=100000a+10000b+a1000+100b+a10+b\)
\(\Rightarrow\left(100000a+1000a+a10\right)+\left(10000b+100b+b\right)\)
\(\Rightarrow101010a+10101b\)
\(\Rightarrow3.33670+3.3367\)
\(=3\left(33670+3367\right)\)
\(\Rightarrow3\left(33670+3367\right)⋮3\)
Vậy nên \(\overline{ababab}\in B\left(3\right)\)
hok tốt!!
abcabc=1000abc+abc
=1001abc=7.11.13.abc
\(\Rightarrow\)abcabc là bội của 7;13;11 vì nó chia hết cho các số đo và lớn hơn chúng