K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2021

bài 3 

a, vì sao a//b

b tính số đo các góc ở đỉnh C a b A B C D 120 độ

5 tháng 7 2021

mk viết cả 2 bài nha

17 tháng 7 2021

hình a, ta thấy 

\(\angle\left(A\right)+\angle\left(DCA\right)=120+60=180^0\)

mà 2 góc này ở vị trí trong cùng phía

\(=>AB//CD\left(1\right)\)

có \(\angle\left(DCE\right)+\angle\left(E\right)=40+140=180^O\)

mà 2 góc này ở vị trí trong cùng phía

\(=>CD//EF\left(2\right)\)

(1)(2)\(=>AB//EF\)

hình b, 

\(=\angle\left(BAD\right)=\angle\left(ADC\right)=30^0\)

mà 2 góc này ở vị trí so le trong \(=>AB//CD\left(1\right)\)

có \(\angle\left(CDE\right)=\angle\left(DEF\right)=40^o\)

mà 2 góc này ở vị trí so le trong \(=>CD//EF\left(2\right)\)

(1)(2)\(=>AB//EF\)

24 tháng 11 2022

Xét ΔABD có AB=AD và góc BAD=60 độ

nên ΔABD đều

Ta có: ΔDAB cân tại D

mà DE là đường trung tuyến

nên DE vuông góc với BE

=>E nằm trên đường tròn đường kính BD(1)

Ta có:ΔBAD cân tại B

ma BH là đường trung tuyến

nên BH vuông góc với HD

=>H nằm trên đường tròn đường kính BD(2)

Xét ΔCBD có CB=CD và góc BCD=60 độ

nên ΔCBD đều

Ta có: ΔBDC cân tại D

mà DF là đường trung tuyến

nen DF vuông góc với BF

=>F nằm trên đường tròn đường kính BD(3)

Ta có: ΔBDC cân tại B

mà BG là đường trung tuyến

nên BG vuông góc với GD
=>G nằm trên đường tròn đường kính BD(4)

Từ (1), (2), (3) và (4) suy ra E,B,F,G,D,H cùng nằm trên 1 đường tròn

19 tháng 11 2023

Bài 1:

ABCD là hình bình hành

=>AD=BC(1)

E là trung điểm của AD

=>\(EA=ED=\dfrac{AD}{2}\left(2\right)\)

F là trung điểm của BC

=>\(FB=FC=\dfrac{BC}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra EA=ED=FB=FC

Bài 2:

a: ABCD là hình bình hành

=>\(\widehat{A}+\widehat{B}=180^0\)

=>\(\widehat{B}=180^0-60^0=120^0\)

ABCD là hình bình hành

=>\(\widehat{A}=\widehat{C};\widehat{B}=\widehat{D}\)

\(\widehat{A}=\widehat{C}\)

mà \(\widehat{A}=60^0\)

nên \(\widehat{C}=60^0\)

\(\widehat{B}=\widehat{D}\)

mà \(\widehat{B}=120^0\)

nên \(\widehat{D}=120^0\)

b: ABCD là hình bình hành

=>\(\widehat{A}=\widehat{C}\)

mà \(\widehat{A}+\widehat{C}=140^0\)

nên \(\widehat{A}=\widehat{C}=\dfrac{140^0}{2}=70^0\)

ABCD là hình bình hành

=>\(\widehat{A}+\widehat{B}=180^0\)

=>\(\widehat{B}=180^0-70^0=110^0\)

ABCD là hình bình hành

=>\(\widehat{B}=\widehat{D}\)

mà \(\widehat{B}=110^0\)

nên \(\widehat{D}=110^0\)

c: ABCD là hình bình hành

=>\(\widehat{B}+\widehat{A}=180^0\)

mà \(\widehat{B}-\widehat{A}=40^0\)

nên \(\widehat{B}=\dfrac{180^0+40^0}{2}=110^0;\widehat{A}=\dfrac{180^0-40^0}{2}=70^0\)

ABCD là hình bình hành

=>\(\widehat{A}=\widehat{C};\widehat{B}=\widehat{D}\)

=>\(\widehat{C}=70^0;\widehat{D}=110^0\)

16 tháng 7 2020

O A E B F C G H D

Đặt OB = OD = a. Hãy chứng minh OE = a

 Tương tự, OF = OG = OH = a 

 Từ đó suy ra sáu điểm E, B, F, G, D, H cùng thuộc một đường tròn ( O;a )

24 tháng 11 2022

Xét ΔABD có AB=AD và góc BAD=60 độ

nên ΔABD đều

Ta có: ΔDAB cân tại D

mà DE là đường trung tuyến

nên DE vuông góc với BE

=>E nằm trên đường tròn đường kính BD(1)

Ta có:ΔBAD cân tại B

ma BH là đường trung tuyến

nên BH vuông góc với HD

=>H nằm trên đường tròn đường kính BD(2)

Xét ΔCBD có CB=CD và góc BCD=60 độ

nên ΔCBD đều

Ta có: ΔBDC cân tại D

mà DF là đường trung tuyến

nen DF vuông góc với BF

=>F nằm trên đường tròn đường kính BD(3)

Ta có: ΔBDC cân tại B

mà BG là đường trung tuyến

nên BG vuông góc với GD
=>G nằm trên đường tròn đường kính BD(4)

Từ (1), (2), (3) và (4) suy ra E,B,F,G,D,H cùng nằm trên 1 đường tròn

24 tháng 11 2022

Xét ΔABD có AB=AD và góc BAD=60 độ

nên ΔABD đều

Ta có: ΔDAB cân tại D

mà DE là đường trung tuyến

nên DE vuông góc với BE

=>E nằm trên đường tròn đường kính BD(1)

Ta có:ΔBAD cân tại B

ma BH là đường trung tuyến

nên BH vuông góc với HD

=>H nằm trên đường tròn đường kính BD(2)

Xét ΔCBD có CB=CD và góc BCD=60 độ

nên ΔCBD đều

Ta có: ΔBDC cân tại D

mà DF là đường trung tuyến

nen DF vuông góc với BF

=>F nằm trên đường tròn đường kính BD(3)

Ta có: ΔBDC cân tại B

mà BG là đường trung tuyến

nên BG vuông góc với GD
=>G nằm trên đường tròn đường kính BD(4)

Từ (1), (2), (3) và (4) suy ra E,B,F,G,D,H cùng nằm trên 1 đường tròn