K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 10 2023

Lời giải:

Áp dụng BĐT Cô-si và Cauchy-Schwarz cho các số dương ta có:

$A=\frac{1}{x}+\frac{1}{\sqrt{xy}}\geq \frac{1}{x}+\frac{1}{\frac{x+y}{2}}=\frac{1}{x}+\frac{2}{x+y}=2(\frac{1}{2x}+\frac{1}{x+y})$

$\geq 2.\frac{4}{2x+x+y}=\frac{8}{3x+y}\geq \frac{8}{4}=2$

Vậy $A_{\min}=2$. Giá trị này đạt được tại $x=y; 3x+y=4\Leftrightarrow x=y=1$

18 tháng 4 2020

M = x^2 + y^2 - xy - x + y + 1

12M = 12x^2 + 12y^2 - 12xy - 12x + 12y + 12

12M = 3(4x^2 + y^2 + 1 - 4xy - 4x + 2y) + 9y^2 + 6y + 9

12M = 3(2x - y - 1)^2 + (3y + 1)^2 + 8

12M > 8

tự xét dấu = 

18 tháng 4 2020

M = x2 + y2 - xy - x + y +1

2M = 2x2 + 2y- 2xy - 2x + 2y + 2

2M = ( x2 - 2xy + y2 ) + ( x2 -2x +1 ) + ( y2 + 2y + 1)

2m = ( x - y )2 + ( x-1 )2 + ( y + 1 )2

Ta có \(\left(x-y\right)^2\ge\forall x;y\)

          \(\left(x-1\right)^2\ge0\forall x\)

          \(\left(y+1\right)^2\ge0\forall y\)

\(\Rightarrow2M\ge0\forall x;y\)

Dấu "=" xảy ra khi x - y = 0; x - 1 = 0; y + 1 = 0

                      <=> x = y ; x = 1; y = -1 ( vô lí )

Vậy không tồn tại giá trị nhỏ nhất nào của biểu thức M

12 tháng 8 2018

ai đó giúp mình với !

12 tháng 8 2018

\(x-y=3\)  =>   \(x=3+y\)

\(P=xy=\left(3+y\right)y=y^2+3y=\left(y+1,5\right)^2-2,25\ge-2,25\)

Dấu "=" xảy ra  <=>  \(y=-1,5\)=>  \(x=1,5\)

Vậy MIN  \(P=-2,25\)khi   \(x=1,5;\)\(y=-1,5\)

18 tháng 9 2021

\(a,x=\dfrac{18}{z};y=10\Leftrightarrow x:y=\dfrac{18}{z}:10=\dfrac{9}{5z}=9:5z\)

\(b,y=x:\dfrac{9}{5z}=\dfrac{9}{5xz}\)

\(c,x=-2\Leftrightarrow z=-9\Leftrightarrow y=\dfrac{9}{5\cdot\left(-9\right)\cdot\left(-2\right)}=\dfrac{1}{10}\\ x=\dfrac{1}{5}\Leftrightarrow z=90\Leftrightarrow y=\dfrac{9}{5\cdot\dfrac{1}{5}\cdot90}=\dfrac{1}{10}\)

 

20 tháng 4 2023

\(M=x^2+y^2-xy-x+y+1\)

\(4M=4x^2+4y^2-4xy-4x+4y+4\)

\(=\left(4x^2+y^2+1-4xy-4x+2y\right)+\left(3y^2+2y+3\right)\)

\(=\left(2x-y-1\right)^2+3\left(y^2+\dfrac{2}{3}y+\dfrac{1}{9}\right)+\dfrac{8}{3}\)

\(=\left(2x-y-1\right)^2+3\left(y+\dfrac{1}{3}\right)^2+\dfrac{8}{3}\ge\dfrac{8}{3}\)

\(\Rightarrow M\ge\dfrac{2}{3}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}2x-y-1=0\\y+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(MinM=\dfrac{2}{3}\)

 

26 tháng 12 2016

Lớp 1 không có cánh nào phù hợp =>chịu

L

26 tháng 12 2016

Hì hì cứ giải kiểu j cho ra là đc giúp mình vs cái lớp 1 đấy là ấn cho có thui !!!