K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

giải chổ nào vậy ko thấy

17 tháng 3 2018

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)

\(\Rightarrow ad+ad+bc=bc+ad+bc\)

\(\Rightarrow2ad+bc=2bc+ad\)

\(\Rightarrow ab+2ad+bc+2cd=ab+2bc+ad+2cd\)

\(\Rightarrow a\left(b+2d\right)+c\left(b+2d\right)=b\left(a+2c\right)+d\left(a+2c\right)\)

\(\Rightarrow\left(a+c\right)\left(b+2d\right)=\left(a+2c\right)\left(b+d\right)\rightarrowđpcm\)

17 tháng 3 2018

DỄ MÀ

(a+2c)(b+d)=ab+ad+2bc+2cd

(a+c)(b+2d)=ab+2ad+bc+2cd

Vì a/b=c/d nên ad=bc

suy ra đpcm

26 tháng 12 2019

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (1).

Có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{a+c}{b+d}=\frac{a+2c}{b+2d}.\)

\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)

Chúc bạn học tốt!

DD
2 tháng 10 2021

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\).

\(\frac{a-2c}{3a+c}=\frac{bt-2dt}{3bt+dt}==\frac{b-2d}{3b+d}\).

2 tháng 10 2021

ơ anh ơi anh đã lm hết bài đou

AH
Akai Haruma
Giáo viên
26 tháng 10 2024

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$.

Ta có:

$(a+2c)(b+d)=(bk+2dk)(b+d)=k(b+2d)(b+d)(1)$

$(a+c)(b+2d)=(bk+dk)(b+2d)=k(b+d)(b+2d)(2)$

Từ $(1); (2)\Rightarrow (a+2c)(b+d)=(a+c)(b+2d)$

12 tháng 8 2016

(a+2c)(b+d)=(a+c)(b+2d)

<=> ab + ad + 2bc + 2cd = ab + 2ad + bc + 2cd

<=> bc - ad = 0. (1)

Mà a/b=c/d <=> ad=bc => (1) luôn đúng. => đpcm

12 tháng 8 2016

Từ ( a + 2c ) ( b + d ) = ( a + c ) ( b + 2d )

\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)\(\Leftrightarrow\frac{bk+2dk}{b+2d}=\frac{bk+dk}{b+d}\)

Xét VT \(\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\left(1\right)\)

Xét VP \(\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ (1) và (2) -->Đpcm

16 tháng 4 2017

a)a/b=c/d=a+b/c+d=a-b/c-d(tc day ti so bang nhau)

=>a+b/a-b=c+d/c-d

b)a/b=c/d=>5a/5b=2c/2d=5a+2c/5c+2d(*) va a/b=4c/4d=a-4c/c-4d(**)

c)a/b=c/d=a+b/c+d=>(a/b)^2=ab/cd=(a+b/c+d)^2

22 tháng 4 2018

a, ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}\)

áp dụng tính chất dă y tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}=\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\)

\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\Rightarrow\dfrac{a+2b}{2a-b}=\dfrac{c+2d}{2c-d}\) (ĐPCM)

22 tháng 4 2018

b, ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}\)

áp dụng tính chất dă tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\left(a+3c\right)\left(b-d\right)=\left(b+3d\right)\left(a-c\right)\) (ĐPCM)

17 tháng 10 2016

sao ko có tỉ lệ thức nào để cm vậy