cho tam giác abc( ab < ac) . gọi i là trung điểm của ac . trên tia đối của tia ib lấy điểm d , sao cho ib = id
a, chứng minh tam giác aib= tam giác cid
b, chứng minh ad = bc và ad // bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giácAIB và tam giác CID, có
AI=IC
AIB=CID
BI=ID
suy ra tam giác AIB=tam giacsCID(c-g-c)
b)Chứng minh như a,suy ra tam giac AID=tam Giác CIB
suy ra IAD=ICB mà 2 góc này ở vị trí so le trong suy ra điều phải chứng minh
a) Xét tam giác AIB và tam giác IDC có:
Cạnh IA= cạnh IC( I là trung điểm của AC)
Cạnh IB = ID( gt)
Góc AIB = góc DIC ( hai góc đối đỉnh)
Do đó : Tam Giác,AIB=tam giác CID.
b) Ta có góc AID = góc CBD (ở vị trí so le trong)
Nên cạnh AC song song với BC
Hình Bạn Tự Vẽ Nha.
a) Xét Δ AIB và Δ CID:
+ IB = ID (gt).
+ IA = IC (I là trung điểm của AC).
+ ^AIB = ^CID (2 góc đối đỉnh).
=> Δ AIB = Δ CID (c - g - c).
b) Xét tứ giác ABCD có:
+ I là trung điểm của AC (gt).
+ I là trung điểm của BC (IB = ID).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AD = BC và AD // BC (Tính chất hình bình hành).
c) Xét tứ giác KABC có:
+ E là trung điểm của AB (gt).
+ E là trung điểm của KC (EC = EK).
=> Tứ giác KABC là hình bình hành (dhnb).
=> KA // BC (Tính chất hình bình hành).
Mà AD // BC (cmt).
=> 3 điểm D, A, K thẳng hàng (đpcm).
a) Xét ΔABIΔABIvà ΔCIDΔCID ta có:
BI = DI (gt)
ˆAIBAIB^ = ˆCIDCID^ ( 2 góc đối đỉnh)
AI = CI (vì I là trung điểm của AC)
⇒ΔAIB=ΔCID⇒ΔAIB=ΔCID
b) Vì ΔAIB=ΔCIDΔAIB=ΔCID (c/m câu a)
⇒ˆICD=ˆBAI⇒ICD^=BAI^ (2 góc tương ứng)
Mà ˆBAI=90oBAI^=90o ⇒ˆICD=90o⇒ICD^=90o
⇒DC⊥AC
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a) Xét ΔAIB và ΔCID có
IA=IC(I là trung điểm của AC)
\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)
IB=ID(gt)
Do đó: ΔAIB=ΔCID(c-g-c)
b) Xét ΔAID và ΔCIB có
IA=IC(I là trung điểm của AC)
\(\widehat{AID}=\widehat{CIB}\)(hai góc đồng vị)
ID=IB(gt)
Do đó: ΔAID=ΔCIB(c-g-c)
Suy ra: AD=CB(Hai cạnh tương ứng) và \(\widehat{DAI}=\widehat{BCI}\)(hai góc tương ứng)
mà \(\widehat{DAI}\) và \(\widehat{BCI}\) là hai góc ở vị trí so le trong
nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)