tìm giá trị nhỏ nhất của biểu thức: D=2x2 + 9y2 - 6xy - 6x - 12y + 2004
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2x^2+9y^2-6xy-6x-12y+2024
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2024
A = (x -3y)^2 +4(x -3y) + 4 + x^2 -10x +25 + 1995
A = (x -3y +2)^2 + (x -5)^2 + 1995 \geq 1995
Min A = 1995
x - 5 = 0 => x = 5
Và x - 3y + 2 = 0 hay 5 -3y +2 = 0 => -3y = -7 => y = 7/3
\(K\)\(nha!~!\)
\(A=2x^2+9y^2-6xy-6x-12y+2046\)
\(=\left[\left(x^2-6xy+9y^2\right)+\left(4x-12y\right)+4\right]-4+\left(x^2-10x+25\right)-25+2046\)
\(=\left[\left(x-3y\right)^2+4\left(x-3y\right)+4\right]+\left(x-5\right)^2-4-25+2046\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+2017\ge2017\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-3y+2=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{7}{3}\\x=5\end{cases}}}\)
Vậy \(A_{min}=2017\) tại \(x=5;y=\frac{7}{3}\)
\(A=2x^2+9y^2-6xy-6x-12y+2015\)
\(A=\left(x^2-6xy+9y^2\right)+x^2-6x-12y+2015\)
\(A=\left(x-3y\right)^2+4.\left(x-3y\right)-10x+x^2+2015\)
\(A=\left(x-3y\right)^2+4.\left(x-3y\right)+4+\left(x^2-10x+25\right)+1986\)
\(A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1986\)
Vì \(\left(x-3y+2\right)^2\ge0;\left(x-5\right)^2\ge0\)
\(\Rightarrow A\ge1986\)
Dấu '=' xảy ra khi:
\(\Rightarrow\hept{\begin{cases}x-3y+2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{7}{3}\\x=5\end{cases}}}\)
Vậy Amin= 1986 khi x = 5, y = 7/3
Chúc bạn học tốt!!!