Cho P = \(\dfrac{\sqrt{x}+2}{2\sqrt{x}+1}\) (đk x>-0 ; x khác 1/2 )
TÌM X BT |P| > HOẶC BẰNG P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P=A\cdot B\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
b: Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-1}{\sqrt{x}}\)
c: Để P<0 thì x-1<0
hay x<1
Kết hợp ĐKXĐ, ta được: 0<x<1
a) ĐKXĐ: \(x>0,x\ne1\)
b) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=\dfrac{x-1}{\sqrt{x}}\)
c) \(P=\dfrac{x-1}{\sqrt{x}}< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)( do \(\sqrt{x}>0\))
a: \(B=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-2x}{x-9}=\dfrac{x-3\sqrt{x}}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
b: \(P=A\cdot B=\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\)
Để |P|>P thì P<0
=>căn x-2<0
=>0<x<4
=>x=1
\(=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}+\sqrt{x}+1=\sqrt{x}-1+\sqrt{x}+1=2\sqrt{x}\)
\(a,P\) xác định \(\Leftrightarrow\left[{}\begin{matrix}x>0\\x\ne1\\x\ne4\end{matrix}\right.\)
\(b,P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\\ =\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1-x+4}\\ =\dfrac{1}{\sqrt{x}}.\dfrac{\sqrt{x}-2}{3}\\ =\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
\(c,P=\dfrac{1}{4}\Leftrightarrow\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\\ \Leftrightarrow\dfrac{4\left(\sqrt{x}-2\right)-3\sqrt{x}}{12\sqrt{x}}=0\\ \Leftrightarrow4\sqrt{x}-8-3\sqrt{x}=0\\ \Leftrightarrow\sqrt{x}=8\\ \Leftrightarrow x=64\left(tmdk\right)\)
Vậy \(x=64\) thì \(P=\dfrac{1}{4}\)
a: \(A=\dfrac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)
\(=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)
b: \(A-5=\dfrac{2x-4\sqrt{x}+2}{\sqrt{x}}=\dfrac{2\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>=0\)
=>A>=5
Thấy : \(\sqrt{x}\ge0\)
\(\Rightarrow P=\dfrac{\sqrt{x}+2}{2\sqrt{x}+1}>0\)
\(\Rightarrow\left|P\right|=P\)
Ta có : \(\left|P\right|=P\ge P\)
=> P = P .
Vậy \(\forall x>0\) TMYC đè bài
Ơ câu này giống câu ở dưới thế ?_? Lặp câu hỏi à bạn :v