tìm số tự nhiên n để
12.(n-3)
15chia hết (n+2)
(3xn+6)chia hết(n-2)
(2xn+10)chia hết (n+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N
=>n-1 thuộc{-1;1;3}
=>n thuộc {1;2;4}
b)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N
=>n-2 thuộc {-2;-1;1;2;7;14}
=>n thuộc {0;1;3;4;9;16}
c)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N
=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}
=>n thuộc{0;2;3;5;6;8;11;18;32}
d)n2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N
=>n-3 thuộc{-3;-2;-1;1;2;3;6}
=>n thuộc{0;1;2;4;5;6;9}
Ta có thể suy luận như sau:
Vì n + 6 chia hết cho n nên suy ra 6 chia hết cho n (vì n chia hết cho n nên bắt buộc 6 phải chia hết cho n)--> n = 1, 2, 3, 6.
(n - 2) + 7 chia hết cho n - 2 nên suy ra 7 chia hết cho n - 2 --> n - 2 = 1 hoặc n - 2 = 7 --> n = 3 hoặc n = 9
n + 15 chia hết cho n + 4. Tương tự ta phân tích ra thành (n + 4) + 11 chia hết cho n + 4 --> 11 chia hết cho n + 4 --> n = 7
Những câu sau e làm tương tự nhé. Bài toán chung cho dạng này là:
a + b chia hết cho c nếu a chia hết cho c thì b phải chia hết cho c. Từ đó ý tưởng của việc giải các bài toán trên là biến đổi vế trái về dạng a + b trong đó a chia hết cho c. Chúc em học càng ngày càng giỏi nhé.
\(\dfrac{3x^{n+1}y^2-2x^5y^n+x^4y^2}{2x^4y^{n-2}}=\dfrac{3}{4}x^{n+1-4}\cdot y^{2-n+2}-x^{5-4}\cdot y^{n-n+2}+\dfrac{1}{2}x^{4-4}\cdot y^{2-n+2}\)
\(=\dfrac{3}{4}x^{n-3}y^{4-n}-xy^2+\dfrac{1}{2}y^{4-n}\)
Để đây là phép chia hết thì n-3>=0 và 4-n>=0
=>3<=n<=4
=>n=3;n=4