K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(x^2+5x=x\left(x+5\right)\)

Để biểu thức này âm thì \(x\left(x+5\right)< 0\)

hay -5<x<0

b: \(3\left(2x+3\right)\left(3x-5\right)< 0\)

\(\Leftrightarrow-\dfrac{3}{2}< x< \dfrac{5}{3}\)

3 tháng 10 2021

còn bài 2 nữa ạ.

13 tháng 10 2021

\(\dfrac{x}{-3}=\dfrac{y}{5}\)\(\dfrac{x}{-6}=\dfrac{y}{10}\)

\(\dfrac{y}{2}=\dfrac{z}{7}\)\(\dfrac{y}{10}=\dfrac{z}{35}\)

\(\dfrac{x}{-6}=\dfrac{y}{10}=\dfrac{z}{35}\)

\(\dfrac{2x}{-12}=\dfrac{3y}{30}=\dfrac{z}{35}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{-12}=\dfrac{3y}{30}=\dfrac{z}{35}=\dfrac{2x-3y+z}{-12-30+35}=\dfrac{42}{-7}=-6\)

\(\left\{{}\begin{matrix}x=-6.-6=36\\y=-6.10=-60\\z=-6.35=-210\end{matrix}\right.\)

13 tháng 10 2021

\(a,\dfrac{x}{-3}=\dfrac{y}{5}\Rightarrow\dfrac{x}{-6}=\dfrac{y}{10};\dfrac{y}{2}=\dfrac{z}{7}\Rightarrow\dfrac{y}{10}=\dfrac{z}{35}\\ \Rightarrow\dfrac{x}{-6}=\dfrac{y}{10}=\dfrac{z}{35}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{-6}=\dfrac{y}{10}=\dfrac{z}{35}=\dfrac{2x}{-12}=\dfrac{3y}{30}=\dfrac{2x-3y+z}{-12-30+35}=\dfrac{42}{-7}=-6\\ \Rightarrow\left\{{}\begin{matrix}x=36\\y=-60\\z=-210\end{matrix}\right.\)

\(b,6x=4y=z\Rightarrow\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{z}{12}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{12}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{12}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x-3y+z}{4-9+12}=\dfrac{42}{7}=6\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=18\\z=72\end{matrix}\right.\)

\(c,x=-2y\Rightarrow\dfrac{x}{-2}=y\Rightarrow\dfrac{x}{-4}=\dfrac{y}{2}\\ 7y=2z\Rightarrow\dfrac{y}{2}=\dfrac{z}{7}\\ \Rightarrow\dfrac{x}{-4}=\dfrac{y}{2}=\dfrac{z}{7}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{-4}=\dfrac{y}{2}=\dfrac{z}{7}=\dfrac{2x}{-8}=\dfrac{3y}{6}=\dfrac{2x-3y+z}{-8+6+7}=\dfrac{42}{5}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{168}{5}\\y=\dfrac{84}{5}\\z=\dfrac{294}{5}\end{matrix}\right.\)

2 tháng 12 2017

ib làm 

18 tháng 7 2016

a) 2.y2 - 4y

 = 2y.(y - 2)

Để biểu thức trên dương thì y và y - 2 cùng âm hoặc cùng dương

+ Nếu y và y - 2 cùng âm thì y < 0; y - 2 < 0

=> y < 0; y < 2 => y < 0 thỏa mãn đề bài

+ Nếu y và y - 2 cùng dương thì y > 0; y - 2 > 0

=> y > 0; y > 2 => y > 2 thỏa mãn đề bài

Vậy y < 0 hoặc y > 2 thỏa mãn đề bài

b) 5.(3y + 1).(4y - 3)

Để biểu thức trên đương thì 3y + 1 và 4y - 3 cùng âm hoặc cùng dương

+ Nếu 3y + 1 và 4y - 3 cùng âm thì 3y + 1 < 0; 4y - 3 < 0

=> 3y < -1; 4y < 3

=> y < 0; y < 1 => y < 0 thỏa mãn đề bài

+ Nếu 3y + 1 và 4y - 3 cùng dương thì 3y + 1 > 0; 4y - 1 > 0

=> 3y > -1; 4y > 1

=> y > -1; y > 0 => y > 0 thỏa mãn đề bài

Vậy y < 0 hoặc y > 0 thỏa mãn đề bài

2/ Ta có: 1/a - 1/b = b/a.b -  a/a.b = b-a/a.b = 1/a.1/b = 1/a.b
=> b - a = 1

Vậy a và b là 2 số nguyên liên tiếp (b hơn a 1 đơn vị) thỏa mãn đề bài

9 tháng 6 2017

Tìm được m = 25

3 tháng 10 2016

a) Ta có:

2y2 - 4y dương 

<=> y(2y-4) dương

<=> y và 2y-4 cùng dấu

<=> \(\left[\begin{array}{nghiempt}y< 0\\2y-4< 0\Rightarrow2y< 4\Rightarrow y< 2\end{array}\right.\)

\(\left[\begin{array}{nghiempt}y>0\\2y-4>0\Rightarrow2y>4\Rightarrow y>2\end{array}\right.\)

Vậy y > 2 hoặc y < 2 thì thỏa mãn đề bài

b) 5(3y+1)(4y-3) > 0

<=> (3y+1)(4y-3) > 0

<=>\(\left[\begin{array}{nghiempt}3y+1>0;4y-3>0\\3y+1< 0;4y-3< 0\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}3y>-1;4y>3\\3y< -1;4y< 3\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}y>-\frac{1}{3};y>\frac{3}{4}\\y< -\frac{1}{3};y< \frac{3}{4}\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}y>\frac{3}{4}\\y< -\frac{1}{3}\end{array}\right.\)

(Dấu ";" có nghĩa là chữ và nha)

3 tháng 10 2016

ghê vãi

25 tháng 6 2021

Bài này không làm như thế!

Ta có: \(5\left(3y+1\right)\left(4y-3\right)>0\)

\(\Leftrightarrow\left(3y+1\right)\left(4y-3\right)>0\)

TH1: \(\hept{\begin{cases}3y+1>0\\4y-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}y>-\frac{1}{3}\\y>\frac{3}{4}\end{cases}}\Rightarrow y>\frac{3}{4}\)

TH2: \(\hept{\begin{cases}3y+1< 0\\4y-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}y< -\frac{1}{3}\\y< \frac{3}{4}\end{cases}}\Rightarrow y< -\frac{1}{3}\)

Vậy khi \(\orbr{\begin{cases}y>\frac{3}{4}\\y< -\frac{1}{3}\end{cases}}\) thì ...

25 tháng 6 2021

Em cảm ơn CTV ạ

😘😘😘