K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

c/ Ta có:

\(x^2-3xy+x-3y\)

\(=x^2+x-3xy-3y\)

\(=x\left(x+1\right)-3y\left(x+1\right)\)

\(=\left(x+1\right)\left(x-3y\right)\)

d/ Ta có:

\(x^3-x^2-5x+125\)

\(=x^3+5x^2-6x^2-30x+25x+125\)

\(=x^2\left(x+5\right)-6x\left(x+5\right)+25\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

21 tháng 7 2018

\(x^2-3xy+x-3y\)

\(=x\left(x-3y\right)+\left(x-3y\right)\)

\(=\left(x+1\right)\left(x-3y\right)\)

\(x^3-x^2-5x+125\) k có nghiệm

23 tháng 8 2023

1.

= (x^3 + 125 ) -(x^2 +5x)

=(x +5) (x^2 -5x +25) -x(x+5)

=(x+5)(x^2 -5x +25 -x)

=(x+5)(x^2 -6x +25)

2.

= (x^3 -27) + (2x^2 -6x)

=(x-3) (x^2 +3x +9) +2x (x-3)

=(x-3) (x^2 +3x +9 +2x)

=(x-3) (x^2 +5x +9)

23 tháng 8 2023

hình như sai đề kìa bạn

13 tháng 7 2018

a) Biến đổi x 3   =   x 2 .x, phân tích thành x( x 2  + 2).

b) Tương tự a) phân tích thành 3(x – 2y).

c) Nhân tử chung 5(x + 3y) phân tích thành 5(x + 3y)(1 – 3x).

d) Thực hiện biến đổi y – x = -(x – y), xuất hiện nhân tử chung là (x – y), phân tích thành (x – y)(3 + 5x).

1A:

a: \(x^3+2x=x\left(x^2+2\right)\)

b: \(3x-6y=3\left(x-2y\right)\)

c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)

\(=5\left(x+3y\right)\left(1-3x\right)\)

d: \(3\left(x-y\right)-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(5x+3\right)\)

7 tháng 10 2021

1A. a. x(x2+2) 

b. 3(x-2y)

c. 5(x+3y)(1-3x) 

d. (x-y) (3-5x)

1B. a. 2x(2x-3)

b.xy(x2-2xy+5)

c. 2x(x+1)(x+2)

d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)

 

9 tháng 9 2020

           Bài làm :

 \(\text{a)}9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)

\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)

\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)

\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)

 \(\text{b)}3x^4y^2+3x^3y^2+3xy^2+3y^2\)

\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)

\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)

\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)

\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)

 \(\text{c)}\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)

\(d ) x^3+3x^2+3x+1-27z^3\)

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

20 tháng 12 2021

Chọn B

12 tháng 8 2019

a) \(x^2-xz-9y^2+3yz\)

\(=\left(x^2-9y^2\right)-\left(xz-3yz\right)\)

\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y-z\right)\)

12 tháng 8 2019

c) \(x^3+2x^2-6x-27\)

\(=\left(x^3-27\right)+\left(2x^2-6x\right)\)

\(=\left(x-3\right)\left(x^2-3x+9\right)+2x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-3x+9+2x\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)