K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

\(\left(2n-1\right)^3-\left(2n-1\right)\)

\(=\left(2n-1\right).\left[\left(2n-1\right)^2-1^2\right]\)

\(=\left(2n-1\right).\left(2n-1-1\right).\left(2n-1+1\right)\)

\(=\left(2n-2\right).\left(2n-1\right).2n\)

\(=2.\left(n-1\right).\left(2n-1\right).2n\)

Với \(n\)lẻ 

\(\Rightarrow n-1\)chẵn

\(\Rightarrow n-1⋮2\)

\(\Rightarrow2.\left(n-1\right)⋮4\)

\(\Rightarrow2.\left(n-1\right).2n⋮8\)

\(\Rightarrow2.\left(n-1\right).\left(2n-1\right).2n⋮8\)(1)

Với n chẵn

\(\Rightarrow n⋮2\)

\(\Rightarrow2n⋮4\)

\(\Rightarrow2.\left(n-1\right).2n⋮8\)

\(\Rightarrow2.\left(n-1\right).\left(2n-1\right).2n⋮8\)(1)

Từ (1) và (2)

\(\Rightarrow\left(2n-1\right)^3-\left(2n-1\right)⋮8\forall x\inℤ\)

                                                     đpcm

9 tháng 1 2016

Vì 6=23 và (2.3)=1

Ta có:

n^3+3n^2+n=n^2(n+1)+2n(n+1) =n(n+1)(n+2)

Nhận thấy n(n+1)(n+2) là tích 3 số nguyên liên tiếp

suy ra Tồn tại 1 số chia hết cho 2 (vì n(n+1) là tích 2 số nguyên liên tiếp)   (với mọi số nguyên n)

Tồn tại 1 số chia hết cho 3 (vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp)

suy ra n(n+1)(n+2) chia hết cho 2,3

hay n^3+3n^2+2n chia hết cho 6

suy ra ĐPCM

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

18 tháng 12 2017

a) 25xy (có gạch ngang trên đầu) chia hết cho 2,5 => y = 0

25x0 chia hết cho 3 => 2 + 5 + x + 0 chia hết cho 3 => 7 + x chia hết cho 3

=> x = {2;5;8}

b) x13y chia hết cho 2,5 => y = 0

x130 chia hết cho 3,9 => x + 1 + 3 + 0 chia hết cho 9 => 4 + x chia hết cho 9

=> x = 5

7 tháng 10 2021

Nếu chia hết cho 2 và 5 thì số tận cùng là 0

y=0 (cả 2 câu a và b)

Chia hết cho 3 và 9 thì mình phải cộng các chữ số lại xem có chia hết cho 3 và 9 không

a. 2+5+0=7. Vậy x=2; 5: 8

b. 1+3+0=4. Vậy x=5 

              Đáp số: a. x=2; 5; 8

                                y=0

                           b. x=5

                               y=0

trong 2 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2

=>n(n+1)(2n+1) chia hết cho 2

xét n=3k=>n(n+1)(2n+1) chia hết cho 3 (I)

xét n=3k+1=>2n+1=3.2k+2+1=3.2k+3=3(2k+1) chia hết cho 3

=>n(n+1)(2n+1) chia hết cho 3 (II)

xét n=3k+2=>n+1=3k+3=3(k+3) chia hết cho 3

=>n(n+1)(2n+1) chia hết cho 3 (III)

từ (I);(II);(III)=>n(n+1)(2n+1) chia hết cho 3

vì (2;3)=1=>n(n+1)(2n+1) chia hết cho 6

=>đpcm

5 tháng 4 2018

trong 2 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2

=>n(n+1)(2n+1) chia hết cho 2

xét n=3k=>n(n+1)(2n+1) chia hết cho 3 (I)

xét n=3k+1=>2n+1=3.2k+2+1=3.2k+3=3(2k+1) chia hết cho 3

=>n(n+1)(2n+1) chia hết cho 3 (II)

xét n=3k+2=>n+1=3k+3=3(k+3) chia hết cho 3

=>n(n+1)(2n+1) chia hết cho 3 (III)

từ (I);(II);(III)=>n(n+1)(2n+1) chia hết cho 3

vì (2;3)=1=>n(n+1)(2n+1) chia hết cho 6

=>đpcm

1 tháng 11 2016

I don't now

tk nhé

bye

xin đó

3 tháng 4 2016

ta co:(11mu n+2)+(12 mu 2n+1)=121.(11mu n)+12.(144 mu n)

=(133-12).(11mu n)+12.(144 mu n)

=133.(11 mu n)+(144mu n -11 mu n).12

ta lai co:133.11 mu n chia het cho 133;(144 mu n)-(11 mu n) chia het cho (144-11)

=>(144 mu n)-(11 mu n)chia het cho 133

=>(11 mu n+2)+(12 mu 2n+1) chia het cho 133