Tìm ƯCLN (2n+1) và 2n (n+1) (n€N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi d là ƯCLN(2n+2;2n)
=> 2 n + 2 ⋮ d 2 n ⋮ d ⇒ 2 n + 2 - 2 n = 2 ⋮ d
Mà d là ƯCLN nên d là số lớn nhất và cũng là ước của 2.
Vậy d = 2
b, Gọi ƯCLN(3n+2 ;2n+1) = d
Ta có: 3 n + 2 ⋮ d 2 n + 1 ⋮ d ⇒ 2 3 n + 2 ⋮ d 3 2 n + 1 ⋮ d
=>[2(3n+2) – 3(2n+1)] = 1 ⋮ d
Vậy d = 1
a) Vì \(n;n+1\) là 2 số tự nhiên liên tiếp \(\left(n< n+1\right)\)
\(\Rightarrow\left(n;n+1\right)=1\)
\(\Rightarrow UCLN\left(n;n+1\right)=1\)
b) \(4n+18=2\left(2n+9\right)⋮\left(1;2;2n+9\right)\left(n\inℕ\right)\)
Ta lại có :
\(2n+9⋮2n+1\)
\(\Leftrightarrow2n+9-2n-1⋮2n+1\)
\(\Leftrightarrow8⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;2;4;8\right\}\)
\(\Leftrightarrow n\in\left\{0\right\}\)
\(\Rightarrow UCLN\left(2n+1;4n+18\right)=UCLN\left(1;18\right)=1\left(n=0\right)\)
\(\Rightarrow\left(2n+1;2n+9\right)=1\)
mà \(2n+1⋮\left(1;2n+1\right)\)
\(\Rightarrow UCLN\left(2n+1;4n+18\right)=1\)
Câu hỏi của Clash Of Clans - Toán lớp 6 - Học toán với OnlineMath
Tham khảo nhé !
Đặt UCLN ( 2n - 1 ; 9n + 4 ) = d
=> 2n - 1 chia hết cho d ; 9n + 4 chia hết cho d
=> 9 ( 2n - 1 ) chia hết cho d ; 2 ( 9n + 4 ) chia hết cho d
=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d
=> 18n - 9 - 18n - 8 chia hết cho d
=> - 15 chia hết cho d
=> d thuộc Ư ( -15 ) = { -15 ; - 5 ; - 3 ; - 1 ; 1 ; 3 ; 5 ; 15 }
Mà d lớn nhất => d = 15
Vậy UCLN ( 2n - 1 ; 9n + 4 ) = 15