cho tam giac abc can tai a . goi m la trung diem cua bc .ve mh vuong goc voi ac.goi o la trung diem cua mh cmr ao vuong goc voi bh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, có I là trung điểm của BC (Gt)
IM ⊥ BC (Gt)
=> IM là trung trực của BC (đn)
=> MB = MC (Định lí)
b, M thuộc tia phân giác của ^BAC (gt)
MH ⊥ AB (gt) và MK ⊥ AC (gt)
=> MH = MK (tính chất)
xét ΔMHB và ΔMKC có: MB = MC (Câu a)
^MHB = ^MKC = 90
=> ΔMHB = ΔMKC (ch-cgv)
=> MH = MK (Định nghĩa)
Bài 6:
b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)
=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).
Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)
=> \(\widehat{ADB}+\widehat{HDB}=120^0\)
Mà \(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)
=> \(2.\widehat{ADB}=120^0\)
=> \(\widehat{ADB}=120^0:2\)
=> \(\widehat{ADB}=60^0.\)
=> \(\widehat{ADB}=\widehat{HBD}=60^0\)
Xét \(\Delta ABD\) có:
(định lí tổng ba góc trong một tam giác).
=> \(90^0+\widehat{ABD}+60^0=180^0\)
=> \(150^0+\widehat{ABD}=180^0\)
=> \(\widehat{ABD}=180^0-150^0\)
=> \(\widehat{ABD}=30^0\)
Vậy \(\widehat{ABD}=30^0.\)
Chúc bạn học tốt!