Cho B=1/2 +(1/2)^2+(1/2)^3+(1/2)^4+...+(1/2)^98+(1/2)^99.CM B<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)
\(=\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+\dfrac{100}{100}\)
\(=100\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)=100B
=>B/A=1/100
b: \(A=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\left(1\right)\)
\(=\dfrac{50}{49}+\dfrac{50}{48}+....+\dfrac{50}{2}+\dfrac{50}{50}\)
\(=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(B=\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{49}+\dfrac{2}{50}\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)
=>A/B=25
\(\frac{N}{2}=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\frac{N}{2}=N-\frac{N}{2}=\frac{1}{2}-\frac{1}{2^{100}}\Rightarrow N=1-\frac{1}{2^{99}}<1\)
B=1/2 +(1/2 )^2+(1/3 )^3+......+(1/2 )\(^{99}\)
⇒2B=1+1/2 +1/22 +......+1/298
⇒B=2B−B=1−1/2\(^{99}\)
⇒1−1/2\(^{99}\) <1⇒B<1
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
=> \(2B-B=\left(1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{98}\right)\)\(-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)\)
=> \(B=1-\frac{1}{2^{99}}< 1\)
đặt B=1/3 + 1/3^2 + 1/3^3 +.....+ 1/3^99
=>1/3B=1/3^2 + 1/3^3 +.....+ 1/3^100
=>1/3B-B=1/3^2 + 1/3^3 +.....+ 1/3^100-1/3-1/3^2-1/3^3-...-1/3^100
=>-2/3=1/3^100-1/3
=>B=(1/3^100-1/3):(-2/3)<1/2 (vì kết quả ra số âm )
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.....+\left(\frac{1}{2}\right)^{99}\)
\(=\frac{1}{2}+\frac{1}{2^2}+\frac{2}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)
Ta có : \(\frac{1}{2}< \frac{1}{1};\frac{1}{2^2}< \frac{1}{1\cdot2};.....;\frac{1}{2^{99}}< \frac{1}{98\cdot99}\)
\(\Rightarrow B=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}\)
\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}=1+1-\frac{1}{99}=2-\frac{1}{99}\)
Mk nghĩ đề có chút sai , mk làm đến đây là đc r , thông cảm nha bạn
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{99}=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2B=1+\frac{1}{2}+...+\frac{1}{2^{98}}\)
\(2B-B=1+\frac{1}{2}+...+\frac{1}{2^{98}}-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)\)
\(B=1-\frac{1}{2^{99}}< 1\)