tính bằng cách hợp lí :
1/2 +1/3 - 1/4 +1/6 +1/8 +1/16 + 1/32 + 1/64 +1/128
các bn giúp mình vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
s=1/21 + 1/22+1/23+.........+1/210
2s= 1/22 +1/23+.........+1/210+1/211
2s-s= ( 1/22 +1/23+.........+1/210+1/211 ) -(1/21 + 1/22+1/23+.........+1/210)
s= 1/211 -1/2
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}\right)\)
\(A=1-\frac{1}{512}=\frac{511}{512}\)
Đặt: \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(\Rightarrow2A=2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\right)\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow2A-A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)\(-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\right)\)
\(\Rightarrow A=1-\frac{1}{512}\)
\(\Rightarrow A=\frac{511}{512}\)
~ rất vui vì giúp đc bn ~
1/2+1/4+1/8+1/16+1/32+1/64
Ta thấy:
1/2=1/1-1/2
1/4=1/2-1/4
1/8=1/4-1/8....
1/64=1/32-1/64
A= 1/1-1/2+1/2-1/4+1/4-1/8+.....+1/32-1/64
A=1 - 1/ 64
A= 63/64
\(\frac{32}{64}+\frac{16}{64}+\frac{8}{64}+\frac{4}{64}+\frac{2}{64}+\frac{1}{64}=\frac{63}{64}\)\(\frac{63}{64}\)
a = 1/(1×2) + 1/(2×3) + 1/(3×4) + 1/(5×6)
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6
= 1 - 1/6
= 5/6
Lời giải:
$A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}$
$2\times A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}$
$2\times A-A=(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32})-(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64})$
$A=1-\frac{1}{64}=\frac{63}{64}$
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
Đặt A=1/2+1/4+...+1/128
=1/2+(1/2)^2+...+(1/2)^7
=>2A=1+1/2+...+(1/2)^6
=>2A-A=1+1/2+...+(1/2)^6-1/2-1/4-...-1/128
=>A=1-1/128=127/128