cho hình bình hành ABCD AB>AD hai đường chéo AC BD cắt nhau tại O
một đường thẳng tùy ý qua O cắt AB CD lần lượt M,N
â) chứng minh OM=ON
b) tứ giác BMDN là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔOAK và ΔOCH có
\(\widehat{OAK}=\widehat{OCH}\)(hai góc so le trong, AK//CH)
OA=OC
\(\widehat{AOK}=\widehat{COH}\)(hai góc đối đỉnh)
Do đó: ΔOAK=ΔOCH
=>OK=OH
=>O là trung điểm của KH
Xét ΔOAE và ΔOCF có
\(\widehat{EAO}=\widehat{FCO}\)(hai góc so le trong, AE//CF)
OA=OC
\(\widehat{AOE}=\widehat{COF}\)
Do đó: ΔOAE=ΔOCF
=>OE=OF
=>O là trung điểm của EF
Xét tứ giác EKFH có
O là trung điểm chung của EF và KH
=>EKFH là hình bình hành
ABCD là hbh=> AD//BC=> góc DAC= góc ACB và AO=OC
Xét tam giác AOE và tam giác COF ta có
góc AOE = góc COF (2 góc đối xừng)
AO=OC
góc DAC= góc ACB
=> tam giác AOE = tam giác COF=> OE=OF
CHứng minh tương tự ta có tam giác AOK= tam giác COH=> OK=OH
Xét tứ giác EHFK có EH và FK là 2 đường chéo cắt nhau tại O
lại có OE=OF
OH=OK
=> EHFk là hình bình hành (do 2 đường chéo cắt nhau tại trung điểm mỗi đường)
b: Xét ΔADK vuông tại K và ΔCBH vuông tại H có
AD=CB
\(\widehat{ADK}=\widehat{CBH}\)
Do đó: ΔADK=ΔCBH
Suy ra: DK=BH
Xét tứ giác BKDH có
DK//BH
DK=BH
Do đó: BKDH là hình bình hành
ABCD là hbh=> AD//BC=> góc DAC= góc ACB và AO=OC
Xét tam giác AOE và tam giác COF ta có
góc AOE = góc COF (2 góc đối xừng)
AO=OC
góc DAC= góc ACB
=> tam giác AOE = tam giác COF=> OE=OF
CHứng minh tương tự ta có tam giác AOK= tam giác COH=> OK=OH
Xét tứ giác EHFK có EH và FK là 2 đường chéo cắt nhau tại O
lại có OE=OF
OH=OK
=> EHFk là hình bình hành (do 2 đường chéo cắt nhau tại trung điểm mỗi đường)
a: Xét ΔMOB vuông tại O và ΔNOD vuông tại O có
OB=OD
\(\widehat{MBO}=\widehat{NDO}\)
Do đó: ΔMOB=ΔNOD
Suy ra: OM=ON
c: Xét tứ giác MBND có
O là trung điểm của MN
O là trung điểm của BD
Do đó: MBND là hình bình hành
mà MN\(\perp\)BD
nên MBND là hình thoi
trả lời giúp mình nha
mình sẽ luôn