tìm x thuộc Z TM
x mũ 2+2x-1 :x=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m , Ta có : \(\left(1900-2.x\right):3-32=16\)
\(\Leftrightarrow\frac{1900-2.x}{35}-32=16\)( Nhân hai vế với 35 )
\(\Leftrightarrow1900-2.x-1120=560\)
\(\Leftrightarrow780-2.x=560\)
\(\Leftrightarrow-2.x=560-780\)
\(\Leftrightarrow\) \(-2.x=-220\)
\(\Rightarrow x=110\)
Vậy x = 110
n, Ta có : \(720:\left[41-\left(2.x-5\right)\right]=2^3.5\)
\(\Leftrightarrow720:\left(41-2.x+5\right)=8.5\)
\(\Leftrightarrow720:\left(46-2.x\right)=40\)
\(\Leftrightarrow\frac{720}{46-2.x}=40\)
\(\Leftrightarrow\frac{720}{2.\left(23-x\right)}=40\)
\(\Leftrightarrow\frac{360}{23-x}\)
\(\Leftrightarrow360=40.\left(23-x\right)\)
\(\Leftrightarrow9=23-x\)
\(\Leftrightarrow x=14\)
Vậy x = 14
c/C=\(\frac{2x^2+2x}{1-x}-\frac{x}{x-1}=\frac{2x^2+2x+x}{1-x}=\frac{2x^2+3x}{1-x}\)
d/C thuộc Z thì C=\(\frac{\left(2x^2-2x\right)+\left(5x-5\right)+5}{1-x}=\frac{-2x\left(1-x\right)-5\left(1-x\right)+5}{1-x}=-2x-5+\frac{5}{1-x}\Rightarrow1-x\in\left(+-1,+-5\right)\Rightarrow\left\{{}\begin{matrix}x=0\\x=2\\x=-4\\x=6\end{matrix}\right.\)
a/A đã rút gọn B=\(\frac{1-2x}{x^2-3x+2}+\frac{x+1}{x-2}=\frac{1-2x}{\left(x-1\right)\left(x-2\right)}+\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}=\frac{1-2x+x^2-1}{\left(x-1\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}=\frac{x}{x-1}\)b/\(\left|x-2\right|=3\Rightarrow\left\{{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}B=\frac{2.5^2+2.5}{1-5}=-15\\B=\frac{2.\left(-1\right)^2+2\left(-1\right)}{1-\left(-1\right)}=0\end{matrix}\right.\)
Bài 1
a) \(x=x^5\)
\(x^5-x=0\)
\(x\left(x^4-1\right)=0\)
\(x=0\) hoặc \(x^4-1=0\)
* \(x^4-1=0\)
\(x^4=1\)
\(x=1\)
Vậy x = 0; x = 1
b) \(x^4=x^2\)
\(x^4-x^2=0\)
\(x^2\left(x^2-1\right)=0\)
\(x^2=0\) hoặc \(x^2-1=0\)
*) \(x^2=0\)
\(x=0\)
*) \(x^2-1=0\)
\(x^2=1\)
\(x=1\)
Vậy \(x=0\); \(x=1\)
c) \(\left(x-1\right)^3=x-1\)
\(\left(x-1\right)^3-\left(x-1\right)=0\)
\(\left(x-1\right)\left[\left(x-1\right)^2-1\right]=0\)
\(x-1=0\) hoặc \(\left(x-1\right)^2-1=0\)
*) \(x-1=0\)
\(x=1\)
*) \(\left(x-1\right)^2-1=0\)
\(\left(x-1\right)^2=1\)
\(x-1=1\) hoặc \(x-1=-1\)
**) \(x-1=1\)
\(x=2\)
**) \(x-1=-1\)
\(x=0\)
Vậy \(x=0\); \(x=1\); \(x=2\)