Cho tam giác ABC đều cạnh 12cm, trung tuyến AM, N là trung điểm của AC. Vẽ Ax // BC cắt đường thẳng MN tại E.
a) Chứng minh tứ giác AMCE là hình chữ nhật.
b) Tính MC, AM, diện tích AMCE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆ANE và ∆CNM có:
^ANE = ^CNM (đối đỉnh)
AN = CN (gt)
^EAN = ^MCN (AE//MC, so le trong)
Do đó ∆ANE = ∆CNM (g.c.g)
=> AE = CM (hai cạnh tương ứng)
Mà BM = CM (gt) nên AE = BM
Tứ giác AEMB có AE = BM và AE // BM nên là hình bình hành => AB = ME (đpcm)
b) Tứ giác AECM có AE = CM (cmt) và AE // CM nên là hình bình hành
∆ABC đều nên AM là đường trung tuyến cũng là đường cao => AMC = 900
Tứ giác AMCE là hình bình hành có một góc vuông nên là hình chữ nhật (đpcm)
c) Ta có: MC = 1/2BC = 1/2AB = 1/2.16 = 8 (cm) và AB = AC = 16 (cm)
∆AMC vuông tại M suy ra AM^2 = AC^2 - MC^2 = 16^2-8^2 = 192 (theo định lý Pythagoras)
=> AM = 8√3 (cm)
Diện tích hình chữ nhật AMCE là 8√3 . 8 = 64√3 (cm^2)
a) Xét ∆ANE và ∆CNM có:
^ANE = ^CNM (đối đỉnh)
AN = CN (gt)
^EAN = ^MCN (AE//MC, so le trong)
Do đó ∆ANE = ∆CNM (g.c.g)
=> AE = CM (hai cạnh tương ứng)
Mà BM = CM (gt) nên AE = BM
Tứ giác AEMB có AE = BM và AE // BM nên là hình bình hành => AB = ME (đpcm)
b) Tứ giác AECM có AE = CM (cmt) và AE // CM nên là hình bình hành
∆ABC đều nên AM là đường trung tuyến cũng là đường cao => AMC = 900
Tứ giác AMCE là hình bình hành có một góc vuông nên là hình chữ nhật (đpcm)
c) Ta có: MC = 1/2BC = 1/2AB = 1/2.16 = 8 (cm) và AB = AC = 16 (cm)
∆AMC vuông tại M suy ra AM^2 = AC^2 - MC^2 = 16^2-8^2 = 192 (theo định lý Pythagoras)
=> AM = 8√3 (cm)
Diện tích hình chữ nhật AMCE là 8√3 . 8 = 64√3 (cm^2)
a) Xét ∆ANE và ∆CNM có:
^ANE = ^CNM (đối đỉnh)
AN = CN (gt)
^EAN = ^MCN (AE//MC, so le trong)
Do đó ∆ANE = ∆CNM (g.c.g)
=> AE = CM (hai cạnh tương ứng)
Mà BM = CM (gt) nên AE = BM
Tứ giác AEMB có AE = BM và AE // BM nên là hình bình hành => AB = ME (đpcm)
b) Tứ giác AECM có AE = CM (cmt) và AE // CM nên là hình bình hành
∆ABC đều nên AM là đường trung tuyến cũng là đường cao => AMC = 900
Tứ giác AMCE là hình bình hành có một góc vuông nên là hình chữ nhật (đpcm)
c) Ta có: MC = 1/2BC = 1/2AB = 1/2.16 = 8 (cm) và AB = AC = 16 (cm)
∆AMC vuông tại M suy ra AM^2 = AC^2 - MC^2 = 16^2-8^2 = 192 (theo định lý Pythagoras)
=> AM = 8√3 (cm)
Diện tích hình chữ nhật AMCE là 8√3 . 8 = 64√3 (cm^2)
a: BC=20cm
AM=10cm
b: Xét tứ giác AMCE có
N là trung điểm của AC
N là trung ddierm của ME
Do đó: AMCE là hình bình hành
mà MA=MC
nên AMCE là hình thoi