Chửng tỏ rằng 52003+52002+52001 chia hết ra 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6x + 11y chia hết cho 31
6x + 11y + 31y chia hết cho 31
6x + 42y chia hết cho 31
6(x + 7y) chia hết cho 31
Mà UCLN(6 ; 31) = 1
Vậy x + 7y chia hết cho 31
A = 6x +11y
B =x + 7y
ta có 6B -A =6x +42y - 6x -11y = 31y chia hết cho 31
Nếu A chia hết cho 31 => 6B chia hết cho 31 mà 6 không chia hết cho 31 => B chia hết cho 31
Vậy 6x+11y chia hết cho 31 thì x +7y chia hết cho 31
Ta có: 6( x + 7y ) = 6x + 42y
Vì 6x + 11y - ( 6x + 42y ) = 6x - 6x + 11y - 42y = -31y mà -31 Chia hết cho 31 nên 6x +11Y - 6( x + 7y) chia hết cho 31 nên 6x + 11Y - ( x + 7y) chia hết cho 31. Vậy mà 6x + 11y chia hết cho 31 nên để 6x + 11y - (x + 7y) chia hết cho 31 thì x + 7y chia hết cho 31(đpcm)
\(6x+11y⋮31\Rightarrow6x+11y+31y=6x+42y=6\left(x+7y\right)⋮31\Rightarrow x+7y⋮31\)
\(x+7y⋮31\Rightarrow6\left(x+7y\right)⋮31\Rightarrow6\left(x+7y\right)-31y=6x+11y⋮31\)
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31
Ta có: 6x+11y=6x+11y+31y=6x+42y=6.(x+7y)
Mà 6 và 31 là 2 số nguyên tố cùng nhau
⇒ x+7y⋮31
x+7y=6.(x+7y)=6x+42y=6x+11y+31y
Mà 6 và 31 là 2 số nguyên tố cùng nhau, 31y⋮31
⇒ 6x+11y⋮31
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31
có : 6(x + 7y) = 6x + 42y = 6x + 11y + 31y
6x + 11y chia hết cho 31; 31y chia hết cho 31
=> 6(x + 7y) chia hết cho 31
=> x + 7y chia hết cho 31
làm ngược lại
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y cũng phải chia hết cho 31 (ĐPCM)
\(=5^{2001}\left(1+5+5^2\right)\)
\(=5^{2001}.31\)
=> 52003+52002+52001 chia hết cho 31