K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

a) \(x^2+x=0\)

\(\Rightarrow x\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy x = 0 hoặc x = -1

b) \(2x^2-x=0\)

\(\Rightarrow x\left(2x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\2x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)

Vậy \(x=0\)hoặc \(x=\frac{1}{2}\)

_Chúc bạn học tốt_

11 tháng 7 2018

a,x=0;x=-1

b,x=0

23 tháng 8 2023

\(x^2-2018x=0\\ \Leftrightarrow x\left(x-2018\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2108=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2018\end{matrix}\right.\)

Vậy `x=0` hoặc `x=2018`

\(2x^2+5x=0\\ \Leftrightarrow x\left(2x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)

Vậy `x=0` hoặc `x=-5/2`

19 tháng 2 2019

- Để hàm số đã cho có đạo hàm tại x = 0 khi và chỉ khi:

+ Hàm số liên tục tại x = 0

+ Đạo hàm bên trái và đạo hàm bên phải tại điểm x = 0 bằng nhau.

+) Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

- Do đó, để hàm số liên tục tại x = 0 khi b = 1.

+) Ta có: f(0) = 1.

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

- Vậy a = 0, b = 1 là những giá trị cần tìm.

Chọn C.

27 tháng 11 2018

Đáp án C.

- Để hàm số đã cho có đạo hàm tại x = 0 khi và chỉ khi:

+ Hàm số liên tục tại x = 0.

+ Đạo hàm bên trái và đạo hàm bên phải tại điểm x = 0 bằng nhau.

+) Ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

- Do đó, để hàm số liên tục tại x= 0 khi b = 1 .

+) Ta có: f(0) = 1.

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

- Vậy a = 0, b = 1 là những giá trị cần tìm.

7 tháng 11 2019

Chọn B.

 

- Với x > 0 ta có  nên hàm số liên tục trên (0; +∞)

- Với x < 0 ta có f(x) = 2x2 + 3m + 1 nên hàm số liên tục trên (-∞; 0).

Do đó hàm số liên tục trên R khi và chỉ khi hàm số liên tục tại x = 0

Ta có: f(0) = 3m + 1

Do đó hàm số liên tục tại .

5 tháng 3 2022

1.\(\left(x+2\right)\left(2x-3\right)=x^2-4\)

\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)-\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-3-x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

2.\(x^2+3x+2=0\)

\(\Leftrightarrow x^2+x+2x+2=0\)

\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

3.\(2x^2+5x+3=0\)

\(\Leftrightarrow2x^2+2x+3x+3=0\)

\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

4.\(x^3+x^2-12x=0\)

\(\Leftrightarrow x\left(x^2+x-12\right)=0\)

\(\Leftrightarrow x\left(x+4\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\\x=3\end{matrix}\right.\)

a: \(\Leftrightarrow\left(x+2\right)\left(2x-3\right)-\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-3-x+2\right)=0\)

=>(x+2)(x-1)=0

=>x=-2 hoặc x=1

b: =>(x+1)(x+2)=0

=>x=-1 hoặc x=-2

c: =>(2x+3)(x+1)=0

=>x=-1 hoặc x=-3/2

d: =>x(x+4)(x-3)=0

hay \(x\in\left\{0;-4;3\right\}\)

22 tháng 1 2019

25 tháng 2 2016

x - x * 2 + x * 2 - 2 - 3 = 0

x - 2 = 0 + 3

x - 2 = 3

x = 3 + 2

x = 5

X + X x 2 + X x 2 - 2 - 3 = 0

X + X x 2 + X x 2 = 0 + 3 + 2 = 5

X x 1 + X x 2 + X x 2 = 5

X x (1 + 2 + 2) = 5

X x 5 = 5

X = 5 : 5

X = 1

29 tháng 3 2018