K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

b) \(\left(2x+1\right).\left(y-3\right)=10\)

\(\Rightarrow\left(2x+1\right)\) và \(\left(y-3\right)\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)  

Vì \(\left(2x+1\right)\) là số lẻ nên \(\left(2x+1\right)\in\left\{1;5\right\}\)

Ta có bảng giá trị: 

2x+115
y-351
x12
y84

Vậy \(\left(x;y\right)=\left\{\left(1;8\right);\left(2;4\right)\right\}\) 
c) \(2xy-x+2y=13\) 

\(\Rightarrow x.\left(2y-1\right)+\left(2y-1\right)=12\) 

\(\Rightarrow\left(x+1\right).\left(2y-1\right)=12\) 

\(\Rightarrow\left(x+1\right)\) và \(\left(2y-1\right)\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\) 
Vì \(\left(2y-1\right)\) là số lẻ nên \(\left(2y-1\right)\in\left\{1;3\right\}\) 

Ta có bảng giá trị:

x+1124
2y-113
x113
y12

Vậy \(\left(x;y\right)=\left\{\left(11;1\right);\left(3;2\right)\right\}\) 

Giải: (tiếp)

d) \(6xy-9x-4y+5=0\) 

\(\Rightarrow3x.\left(2y-3\right)-4y=-5\) 

\(\Rightarrow3x.\left(2y-3\right)-4y+6=1\) 

\(\Rightarrow3x.\left(2y-3\right)-2.\left(2y-3\right)=1\)

\(\Rightarrow\left(3x-2\right).\left(2y-3\right)=1\) 

\(\Rightarrow\left(3x-2\right)\) và \(\left(2y-3\right)\inƯ\left(1\right)=\left\{1\right\}\) 

Ta có bảng giá trị:

3x-21
2y-31
x1
y2

Vậy \(\left(x;y\right)=\left\{\left(1;2\right)\right\}\) 

e) \(2xy-6x+y=13\)

\(\Rightarrow2x.\left(y-3\right)+\left(y-3\right)=10\) 

\(\Rightarrow\left(2x+1\right).\left(y-3\right)=10\) 

Còn lại câu e nó giống hệt câu b nha nên câu lm giống nó là đc!

f) \(2xy-5x+2y=148\) 

\(\Rightarrow2y.\left(x+1\right)-5x-5=143\) 

\(\Rightarrow2y.\left(x+1\right)-5.\left(x+1\right)=143\) 

\(\Rightarrow\left(x+1\right).\left(2y-5\right)=143\) 

\(\Rightarrow\left(x+1\right)\) và \(\left(2y-5\right)\inƯ\left(143\right)=\left\{1;11;13;143\right\}\) 

Ta có bảng giá trị:

x+111113143
2y-514313111
x01012142
y74983

Vậy \(\left(x;y\right)=\left\{\left(0;74\right);\left(10;9\right);\left(12;8\right);\left(142;3\right)\right\}\) 

Chúc bạn học tốt! (Trời mk mất gần 1 tiếng bài này! khocroi)

25 tháng 6 2023

a, (3 - \(x\))(4y + 1) = 20

   Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}

Lập bảng ta có:

\(3-x\) -20 -10 -5 -4 -2 -1 1 2 4 5 10 20
\(x\) 23  13 8 7 5 4 2 1 -1 -2 -7 -17
4\(y\) + 1 -1 -2 -4 -5 -10 -20 20 10 5 4 2 1
\(y\) -1/2 -3/4 -5/4 -6/4 -11/4 -21/4 19/4 9/4 1 3/4 1/4 0

Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) =(-1; 1); (-17; 0)

 

 

25 tháng 6 2023

b, \(x\left(y+2\right)\)+ 2\(y\) = 6

    \(x\) = \(\dfrac{6-2y}{y+2}\)

\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2

⇒ 10 ⋮ \(y\) + 2

Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}

Lập bảng ta có:

\(y+2\) -10 -5 -2 -1 1 2 5 10
\(y\) -12 -7 -4 -3 -1 0 3 8
\(x=\) \(\dfrac{6-2y}{y+2}\) -3 -4 -7 -12 8 3 0 -1

 Theo bảng trên ta có các cặp \(x;y\)

 nguyên thỏa mãn đề bài lần lượt là:

(\(x;y\)    ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)                           

 

NV
20 tháng 8 2021

\(\Leftrightarrow2xy-6x-5y=18\)

\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)

\(\Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)

Phương trình ước số cơ bản

25 tháng 9 2019

Ta có: \(6x+5y+18=2xy\)

\(\Leftrightarrow6x+5y-2xy=-18\)

\(\Leftrightarrow2x\left(3-y\right)+5y=-18\)

\(\Leftrightarrow2x\left(3-y\right)+5y-15=-18-15\)

\(\Leftrightarrow2x\left(3-y\right)+5\left(y-3\right)=-33\)

\(\Leftrightarrow2x\left(3-y\right)-5\left(3-y\right)=-33\)

\(\Leftrightarrow\left(3-y\right)\left(2x-5\right)=-33\)

Dễ rồi

11 tháng 4 2020

Câu hỏi của kalista - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo!

11 tháng 4 2020

-3xy+4y-6x=27

-3xy+4y-(6x+8)=19

y(4-3x)-2(4-3x)=19

(y-2)(4-3x)=19

Vì y;x là số nguyên => y-2;4-3x là số nguyên

                               =>  y-2;4-3x ∈ Ư(19)

Ta có bảng:

y-2119-1-19
4-3x191-19-1
x3211-17
y-51115/3 (loại)

Vậy cặp số nguyên (y;x) thỏa mãn là: (3;-5) ; (21;1) ; (1;11) .

27 tháng 3 2020

ta có:

−3xy+4y−6x−27=0

⇒−3xy+4y−(6x+8)=19

⇒y(4−3x)−2(4−3x)=19

⇒(y−2)(4−3x)=19,y∈Z⇒y−2,4−3x∈Ư(19)

ta có bảng:

y-21-119-19
y3121-17
4-3x19-191-1
x-5\(\notin Z\)1\(\notin Z\)

vậy...

học tốt

AH
Akai Haruma
Giáo viên
28 tháng 10 2023

Lời giải:
$2x^2+y^2+2xy-6x-2y=8$

$\Leftrightarrow (x^2+y^2+2xy)+x^2-6x-2y=8$
$\Leftrightarrow (x+y)^2-2(x+y)+x^2-4x=8$

$\Leftrightarrow (x+y)^2-2(x+y)+1+(x^2-4x+4)=13$

$\Leftrightarrow (x+y-1)^2+(x-2)^2=13$
$\Rightarrow (x-2)^2=13-(x+y-1)^2\leq 13$
Mà $(x-2)^2$ là scp với mọi $x$ nguyên nên $(x-2)^2\in\left\{0; 1; 4; 9\right\}$

Nếu $(x-2)^2=0\Rightarrow (x+y-1)^2=13-(x-2)^2=13$ (không là scp - loại) 

Nếu $(x-2)^2=1\Rightarrow (x+y-1)^2=12$ (không là scp - loại)

Nếu $(x-2)^2=4\Rightarrow (x+y-1)^2=9$

$\Rightarrow x-2=\pm 2$ và $x+y-1=\pm 3$
TH1: $x-2=2; x+y-1=3\Rightarrow x=4; y=0$

TH2: $x-2=2; x+y-1=-3\Rightarrow x=4; y=-6$

TH3: $x-2=-2; x+y-1=3\Rightarrow x=0; y=4$

TH4: $x-2=-2; x+y-1=-3\Rightarrow x=0; y=-2$

Nếu $(x-2)^=9\Rightarrow (x+y-1)^2=4$ (bạn cũng làm tương tự trên)

28 tháng 10 2023

scp là gì vậy bạn