K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
22 tháng 6 2021

Sửa đề chút. Tam giác \(ABC\)vuông tại \(A\).

a) \(I\)thuộc trung trực của \(AB\)nên \(IA=IB\)suy ra tam giác \(AIB\)cân tại \(I\).

Tam giác \(ABC\)vuông tại \(A\)có \(IA=IB\)\(I\in BC\)suy ra \(I\)là trung điểm của \(BC\)

suy ra \(IA=IB=IC\)\(\Rightarrow\Delta AIC\)cân tại \(I\).

b) Xét tam giác \(BCM\)có \(MI\perp BC,CA\perp MB\)và \(CA\)cắt \(MI\)tại \(N\)nên \(N\)là trực tâm của tam giác \(BCM\).

Suy ra \(EB\perp MC\).

c) \(N\)thuộc đường trung trực của \(BC\)nên \(NB=NC\)

suy ra \(\Delta NAB=\Delta NEC\)(cạnh huyền - góc nhọn) 

suy ra \(AB=EC\)

mà \(MB=MC\)(do \(M\)thuộc đường trung trực của \(BC\))

nên \(MB-AB=MC-EC\Leftrightarrow MA=ME\)

suy ra \(\widehat{MAE}=\frac{180^o-\widehat{AME}}{2}\)

mà \(\widehat{MBC}=\frac{180^o-\widehat{BMC}}{2}\)

mà hai góc này ở vị trí đồng vị do đó \(AE//BC\).

d) Có \(AE//BC\)suy ra \(\widehat{NAE}=\widehat{ACI}\)(hai góc so le trong) 

suy ra \(\widehat{NAE}=\widehat{NAI}\)(vì \(\widehat{IAC}=\widehat{ICA}\)do tam giác \(IAC\)cân tại \(I\))

Tam giác \(AIE\)có \(AN\)vừa là trung tuyến vừa là phân giác nên tam giác \(AIE\)cân tại \(A\).

suy ra tam giác \(AIE\)đều (vì \(IE=IA\)

suy ra \(\widehat{ACB}=\widehat{NAE}=\frac{1}{2}\widehat{EAI}=\frac{1}{2}.60^o=30^o\).

Vậy tam giác \(ABC\)có \(\widehat{ACB}=30^o\)thì \(N\)là trọng tâm tam giác \(AIE\).

19 tháng 5 2022

a,

Ta có :

Δ ABC vuông tại A

Mà AI là đường trung tuyến của BC

=> AI = BI = IC

Xét Δ AIB, có :

AI = BI (cmt)

=> Δ AIB cân tại A

Xét Δ AIC, có :

AI = AC (cmt)

=> Δ AIC cân tại I

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

22 tháng 5 2021

bài 3 

bạn tự kẻ hình nha

a)*Tam giác IAB có I thuộc trung trực AB

            => Tam giác IAB cân tại I

            *Có IAC = 90 – BAI

                    BCA = 90 – ABC (mà ABC = BAI)

             =>Tg IAC cân tại I                                                                                                                                   

b)*Tg BMC có đg cao CA cắt đg cao MI tại N

             =>N là trực tâm

             =>BE vg góc MC                                                                                                                       

c)*M thuộc trung trực BC => MB = MC => MBC = MCB

   *N thuộc trung trực BC => NB = NC => NBC = NCB

    => Tg BAC = Tg CEB (cgc)

     => MA = ME => M thuộc trung trực AE

     * Gọi J là giao của MI và AE

      => Tg MJA = Tg MJE (cgc)

       => MI vuông góc AE (mà MI vg góc BC)

        =>AE // BC                                                                                                                                         d)* Có NB = NC (cmt)

         mà EB = AC (hai cạnh tương ứng do Tg BAC = Tg CEB)

        =>NA = NE

        =>Tg NAE cân tại N

        =>NAE = NEA

             mà NEA = NBC (slt) = NCB (Tg NCB cân taih N – cmt ) = IAC (Tg IAC cân tại I – cmt)

         =>NAE = IAC

         =>AK là tpg IAE ( K là giao của AN và IE)

           mà AK cx là trung tuyến Tg IAE ( do N là trọng tâm – gt )

          =>Tg IAE cân tại A

          =>IA = IE

         mà IA = IC  (Tg IAC cân tại I – cmt)

          =>IE = IC

          =>Tg IEA = Tg EIC (cgc)

          =>IA = EC

               mà EC = BA (cmt)

           =>IA = BA

           =>Tg IAB đều

           =>ABC = 60

           =>Tg ABC cần có góc ABC = 60 để N là trọng tâm Tg IAE

k cho mk nha

a: Ta có: NM là đường trung trực của BC

nên NM⊥BC tại M

mà NM⊥AD

nên BC//AD

Ta có: N là điểm nằm trên đường trung trực của BC

nên NB=NC

Xét ΔAND và ΔCNB có 

\(\widehat{AND}=\widehat{CNB}\)

\(\widehat{ADN}=\widehat{CBN}\)

Do đó: ΔAND\(\sim\)ΔCNB

Suy ra: \(\dfrac{AN}{CN}=\dfrac{ND}{NB}\)

\(\Leftrightarrow AN=ND\)

Xét ΔAND có AN=ND

nên ΔNAD cân tại N

b: Ta có: NA+NC=AC

ND+NB=DB

mà NA=ND

và NC=NB

nên AC=DB

Xét tứ giác ABCD có AD//BC

nên ABCD là hình thang

mà AC=DB

nên ABCD là hình thang cân

a: AN=AB/2

AM=AC/2

mà AB=AC

nên AN=AM

=>ΔANM cân tại A

b: Xét ΔNBE vuông tại N và ΔMCD vuông tại M có

NB=MC

góc B=góc C

=>ΔNBE=ΔMCD

c: ΔNBE=ΔMCD

=>BE=CD

=>BD+DE=CE+DE

=>BD=CE

a: Xet ΔBME vuông tại M và ΔBAC vuông tại A có

góc B chung

=>ΔBME đồng dạng với ΔBAC

b: Xét ΔMBE vuông tại M và ΔMNC vuông tại M có

góc MBE=góc MNC

=>ΔMBE đồng dạng với ΔMNC

=>MB/MN=ME/MC

=>MN*ME=MB*MC=1/4BC^2

=>BC^2=4*MN*ME

14 tháng 4 2023

a) xét △ABC và △MBE có : 

Góc BAC  = Góc BME  = 90 (Gt)

Góc B chung

⇒△ABC ∼ △MBE (g.g) (1)

b)Xét △ABC và △MCN có:

Góc BAC  = góc NMC = 90 (Gt)

⇒△ABC ∼ △MBE (g.g) (2)

Ta có M là tđ của BC ⇒ MB =MC =1/2 BC

Từ (1) và (2) ⇒△MNC ∼ △MBE

⇒EM/MC = MN/BM

⇔ EM/MN = 1/2BC : 1/2BC

⇔BC2 =EM/MN : 4

⇔BC2 = EM/4MN

 

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED
=>BA=BE

b: BA=BE

DA=DE

=>BD là đường trung trực của AE
c: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADK=góc EDC

=>ΔDAK=ΔDEC

=>DK=DC>DA

d: BK=BC

DK=DC

=>BD là trung trực của CK

=>BD vuông góc CK

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:a) AM=IKb) Tam giác AMI bằng tam giác IKCc) AI=ICBài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IAa) CMR tam giác BID bằng tam giác CIAb) CMR : BD vuông góc với ABc) Qua A kẻ đường thẳng song song với BC cắt đường...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:

a) AM=IK

b) Tam giác AMI bằng tam giác IKC

c) AI=IC

Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA

a) CMR tam giác BID bằng tam giác CIA

b) CMR : BD vuông góc với AB

c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC

d) CMR: AB là tia phân giác cuả góc DAM

Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC

a) C/M: tam giác AKB bằng tam giác AKC

b) C/M: AK vuông góc với BC

c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK

Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR

a) BD= CE

b) tam giác OEB bằng tam giác ODC

c) AO là tia phân giác cua góc BAC

 

3
21 tháng 2 2017

la sao eo hieu anh oi em moi lop 5 anh lop 7 saoe lam dc ha troi,voi lai bai do cau hoi giong em nhung bai em la tim ti so % cua AI va IC anh lam dc ko giai giup em voi anh.Anh ko giai dc xung dang lam gi la lop 7 ha anh,em noi co dung ko????EM NOI VAY LA DUNG CHINH XAC,DUNG CCMNR!!!!!!!!!!!!:))))))

6 tháng 12 2017

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:

a) AM=IK

b) Tam giác AMI bằng tam giác IKC

c) AI=IC

Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR

a) BD= CE

b) tam giác OEB bằng tam giác ODC

c) AO là tia phân giác cua góc BAC

Được cập nhật 41 giây trước (20:12)