K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2015

A = 2 + 22 + 23 + 24 +...+260

   - A tất nhiên chia hết cho 2 

A = 2 + 22 + 23 + 24 +....+ 260

ta có: (2 + 22) + ( 23 + 24) +....+ (259 + 260)

      chc 3        +    chc 3   + ....+   chc 3

=> A chia hết cho 3

A = 2 + 2+ 23 + 24 + .... + 260

ta có: (2 + 22 + 23) + (24+25+26) +.....+(258 + 259 + 260)

           chc 7          +  chc 7       +.... +    chc 7

=> A chia hết cho 7

A = 2 + 22 + 23 + 24 +....+260

ta có: (2 + 22 + 23) + (24 + 25 + 26)+....+(258 + 259 + 260)

              chc 14     +    chc 14       +.....+   chc 14

=> A chia hết cho 14

25 tháng 11 2018

chc là gì vậy bạn Đỗ Thi Ngọc Khánh

5 tháng 10 2021

A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259)  chia hết cho 3
=>A  chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7  chia hết cho 7 =>7.(2+...+258)  chia hết cho 7

CHIA HẾT CHO 3 :

A= (2+22)+(23+24)+...+(259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=2.3+23.3+...+259.3

A=3.(2+23+...+259)

Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3

=>A chia hết cho 3


 

4 tháng 11 2021

dcv

13 tháng 1 2017

A = 2 + 22 + 23 + 24 + ... + 219 + 220

A = (2 + 22) + (23 + 24) +... + (219 + 220)

A = 2.(1+2) + 23.(1 + 2) +... + 219.(l + 2)

A = 2.3 + 23.3 +...+ 219.3 Do đó A chia hết cho 3

8 tháng 1 2021

do đó A chia hết cho 3

9 tháng 11 2021

\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6+2^2.6+...+2^{98}.6=6\left(1+2^2+...+2^{98}\right)⋮6\)

16 tháng 10 2021

\(A=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6+6.2^2+...+6.2^{98}\)

\(=6\left(1+2^2+...+2^{98}\right)⋮6\)

22 tháng 10 2021

\(A=2+2^2+2^3+2^4+...+2^{100}\)

\(=2\cdot3+2^3\cdot3+...+2^{99}\cdot3\)

\(=6\left(1+2^2+...+2^{98}\right)⋮6\)

2 tháng 11 2022

cho mình hỏi tại sao bạn lại nhân với 3

 

Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}+91\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)+91\)

\(=2\cdot\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)+91\)

\(=7\cdot\left(1+2^4+...+2^{97}\right)+7\cdot13\)

\(=7\cdot\left(1+2^4+...+2^{97}+13\right)⋮7\)(đpcm)

Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)\)

\(=2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

\(=\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{97}\right)\)

\(=7\cdot\left(2+2^4+...+2^{97}\right)⋮7\)(đpcm)

18 tháng 11 2019

A = 2 + 22 + 23 + 24 + 25..... + 223 + 224

=  (2 + 22 + 23) + (23 + 24 + 25) + ..... + (222 + 223 + 224)

=  (2 + 22 + 23) + 22 (2 + 2+ 23) + .... + 222. (2 + 22 + 23)

= 14 + 22.14 + .... + 222.14

= 14.(1 + 22 + ... + 222)

= 2.7.(1 + 22 + ... + 222\(⋮\) 7

\(\Rightarrow A⋮7\)(ĐPCM)

21 tháng 11 2021

A=\((1+2)+\left(2^2+2^3\right)+...+\left(2^{19}+2^{20}\right)\)

A=\(3.1+2^2\left(1+2\right)+...+2^{19}\left(1+2\right)\)

A=\(3.1+3.2^2+...+3.2^{19}\)

A=\(3\left(1+2^2+...+2^{19}\right)\)\(⋮3\)

Vậy A\(⋮3\)

21 tháng 11 2021

A=(1+2)+(22+23)+...+(219+220)(1+2)+(22+23)+...+(219+220)

A=3.1+22(1+2)+...+219(1+2)3.1+22(1+2)+...+219(1+2)

A=3.1+3.22+...+3.2193.1+3.22+...+3.219

A=3(1+22+...+219)3(1+22+...+219)⋮3⋮3

NÊN  A⋮3

19 tháng 11 2021
2×6²-48:2³