Cho \(\frac{a}{b}\) tối giản . CMR : \(\frac{ab}{a^2+ab+b^2}\) tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(\frac{a}{b}\) tối giản \(\RightarrowƯCLN\left(a;b\right)=1\) (1)
Giả sử \(\frac{ab}{a+b}\) không tối giản
Gọi \(ƯCLN\left(ab;a+b\right)=d\ne1\Rightarrow\left\{{}\begin{matrix}ab⋮d\\\left(a+b\right)⋮d\end{matrix}\right.\)
Do \(a;b\) nguyên tố cùng nhau mà \(ab⋮d\Rightarrow\left[{}\begin{matrix}a⋮d\\b⋮d\end{matrix}\right.\)
- Nếu \(a⋮d\) lại có \(a+b⋮d\Rightarrow b⋮d\RightarrowƯCLN\left(a;b\right)=d\ne1\) mâu thuẫn giả thiết (1)
- Nếu \(b⋮d\) mà \(a+b⋮d\Rightarrow a⋮d\RightarrowƯCLN\left(a;b\right)=d\ne1\) cũng mâu thuẫn (1)
Vậy điều giả sử là sai \(\Rightarrow\frac{ab}{a+b}\) tối giản
Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
Gọi d = UCLN(a,a+b)
\(\Rightarrow\hept{\begin{cases}a⋮d\\a+b⋮d\Rightarrow b⋮d\end{cases}}\)
=> \(d\inƯC\left(a,b\right)\)
Do \(\frac{a}{b}\)là phân số tối giản
=> (a,b) = 1
=> d = 1
=> \(\frac{a}{a+b}\)là phân số tối giản
- Còn phân số \(\frac{a}{a.b}\)không phải là ps tối giản vì nó vẫn rút gọn được: \(\frac{a}{a.b}=\frac{1}{b}\)
( sai thì thôi nha )