Tìm x,y, biết : 5y=124 + 2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ x:y:z = 3:5:(-2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
=> \(\begin{cases}x=93\\y=155\\z=-62\end{cases}\)
b) Từ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)
=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3z-7y+5z}{63-98+50}=\frac{30}{15}=2\)
=> \(\begin{cases}x=42\\y=28\\z=20\end{cases}\)
a) Giải:
Ta có: \(x:y:z=3:5:\left(-2\right)\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x}{15}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
+) \(\frac{x}{3}=31\Rightarrow x=93\)
+) \(\frac{y}{5}=31\Rightarrow y=155\)
+) \(\frac{z}{-2}=31\Rightarrow z=-62\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(93;155;-62\right)\)
b) Giải:
Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
+) \(\frac{x}{21}=2\Rightarrow x=42\)
+) \(\frac{y}{14}=2\Rightarrow y=28\)
+) \(\frac{z}{10}=2\Rightarrow z=20\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(42;28;20\right)\)
a)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)
=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)
b)
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)
=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)
c)
Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)
=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)
d)
Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)
=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{2x-y}{10-2}=\dfrac{16}{8}=2\\ \Rightarrow\left\{{}\begin{matrix}x=10\\y=4\end{matrix}\right.\)
Lời giải:
a. Thay $y=x+1$ vào điều kiện ban đầu có:
$3x+5(x+1)=13$
$8x+5=13$
$8x=8$
$x=1$
$y=x+1=2$
b. Thay $x=y+5$ vô điều kiện đầu thì:
$2(y+5)-3y=4$
$-y+10=4$
$-y=-6$
$y=6$
$x=6+5=11$
c. Thay $y=x-2$ vô điều kiện đầu thì:
$-x+5(x-2)=-6$
$4x-10=-6$
$4x=10+(-6)=4$
$x=1$
$y=x-2=1-2=-1$
a) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\x+1=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\3x-3y=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8y=16\\x+1=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y-1=2-1=1\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}2x-3y=4\\x=y+5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\2x-2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-y=-6\\x=y+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=11\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}-x+5y=-6\\y=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+5y=-6\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=-4\\y=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=y+2=-1+2=1\end{matrix}\right.\)
Ta có
\(\dfrac{3x}{15}=\dfrac{y}{2}\)
áp dụng ... ta đc
\(\dfrac{3x}{15}=\dfrac{y}{2}=\dfrac{3x-y}{15-2}=\dfrac{26}{13}=2\)
x=10
y=4
2x = 5y = 7z\(\Rightarrow\frac{2x}{70}=\frac{5y}{70}=\frac{7z}{70}=\frac{x}{35}=\frac{y}{14}=\frac{z}{10}=\frac{2x+y-z}{70+14-10}=\frac{74}{74}=1\Rightarrow\hept{\begin{cases}x=35\\y=14\\z=10\end{cases}}\)
\(2x+5y=26\\ 2x-6=20-5y\\ 2\left(x-3\right)=5\left(4-y\right)\)
\(\Rightarrow2\left(x-3\right)⋮5.\) Mà 2,5 là 2 số nguyên tố cùng nhau
\(\Rightarrow x-3⋮5\Leftrightarrow x-3=5k\left(k\in Z\right)\Leftrightarrow x=5k+3\)
\(\Rightarrow5\left(4-y\right)=2\cdot5k\Leftrightarrow4-y=2k\Leftrightarrow y=4-2k\)
Vậy \(x=5k+3;y=4-2k\left(k\in Z\right)\)
là nghiệm nguyên của phương trình
Ta thấy : 5y luôn có tận cùng là số lẻ
Mà 124 là số chẵn
Do đó 2x là số lẻ
\(\Rightarrow\)2x=1
\(\Rightarrow\)x=0
Do đó : 5y=124+1=125
\(\Rightarrow y=3\)
Vậy x=0
y=3
+) Nhận xét: Nếu x = 0 => 2x = 1 => 5y = 124 + 1 = 125 = 53 => y = 3
+) Nếu x > 0 => 2x là số chẵn => 124 + 2x l là số chẵn Mà 5y là số lẻ => không có x; y thỏa mãn
Vậy x = 0; y = 3