K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2016

\(\frac{1}{pt}\)=\(\sqrt{x}+\sqrt{2x+3}=\frac{1}{\sqrt{3}}\left(\sqrt{4x-3}+\sqrt{5x-6}\right)\)   

=>\(\frac{x-2x-3}{\sqrt{x}-\sqrt{2x-3}}=\frac{1}{\sqrt{3}}\left(\frac{4x-3-5x-6}{\sqrt{4x-3}-\sqrt{5x+6}}\right)\)

=>\(\frac{3-x}{\sqrt{x}-\sqrt{2x-3}}=\frac{1}{\sqrt{3}}\left(\frac{3-x}{\sqrt{4x-3}-\sqrt{5x+6}}\right)\)

=>\(\sqrt{x}-\sqrt{2x-3}=\sqrt{3}\left(\sqrt{4x-3}-\sqrt{5x+6}\right)\)

=>\(\frac{3-x}{\sqrt{x}+\sqrt{2x-3}}=\sqrt{3}\left(\frac{3-x}{\sqrt{4x-3}+\sqrt{5x-6}}\right)\)

=>\(\left(3-x\right)\left(\frac{1}{\sqrt{x}+\sqrt{2x-3}}-\left(\frac{\sqrt{3}}{\sqrt{4x-3}+\sqrt{5x-6}}\right)\right)\)=0

=>3-x=0=>x=3

hoặc\(\frac{1}{\sqrt{x}+\sqrt{2x-3}}-\left(\frac{\sqrt{3}}{\sqrt{4x-3}+\sqrt{5x-6}}\right)\)=0

11 tháng 6 2016

Em mới học lớp 7 

8 tháng 10 2016

Ta có:

x = \(\frac{1}{2}\)\(\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)

  = \(\frac{1}{2}\)\(\sqrt{\frac{\left(\sqrt{2}-1\right)^2}{1}}\)

  = \(\frac{1}{2}\)(\(\sqrt{2}\)-1)

=> 2x = \(\sqrt{2}\)-1

=> (2x)2= ( \(\sqrt{2}\)-1)2

=> 4x2= 2-2\(\sqrt{2}\)+1

=> 4x2= -2( \(\sqrt{2}\)-1)+1

=> 4x2= -4x +1 => 4x2+4x-1=0

Lại có:

A1= (\(4x^5\)+\(4x^4\)- \(x^3\)+1)19

   = [  x3( 4x2+4x-1) +1]19

   =1

    A2=( \(\sqrt{4x^5+4x^4-5x^3+5x+3}\))3

       = (\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+\left(4x^2+4x-1\right)+4}\))3

       = 23=8

  A3= \(\frac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\)

     = \(\sqrt{2}\)- \(\sqrt{2}\)\(\sqrt{1-\sqrt{2}}\)

Cộng 3 số vào ta được A

6 tháng 10 2016

no biet

21 tháng 6 2019

\(1-\sqrt{2}x\) nha

NV
21 tháng 6 2019

\(x=\frac{1}{2}\left(\sqrt{2}-1\right)\)

\(\Leftrightarrow2x=\sqrt{2}-1\Leftrightarrow4x^2=3-2\sqrt{2}=1-4.\frac{1}{2}\left(\sqrt{2}-1\right)=1-4x\)

\(\Leftrightarrow4x^2+4x-1=0\)

\(\left[x^3\left(4x^2+4x-1\right)+1\right]^{19}=1^{19}=1\)

\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+4x^2+4x-1+4}^3=\sqrt{4}^3=8\)

\(\frac{1-\sqrt{2}x}{\sqrt{\frac{1}{2}\left(4x^2+4x-1\right)+\frac{1}{2}}}=\frac{1-\sqrt{2}x}{\sqrt{\frac{1}{2}}}=\sqrt{2}-2x=\sqrt{2}-\left(\sqrt{2}-1\right)=1\)

\(M=1+8+1=10\)