K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

\(a\le b\Rightarrow2a\le a+b=c\Rightarrow a\le\frac{c}{2}\)(1)

\(a\le b\Rightarrow c=a+b\le2b\Rightarrow\frac{c}{2}\le b\)(2)

Từ (1) và (2) => a<=c/2<=b

7 tháng 4 2020

BĐT bên trái hiển nhiên là Nesbitt.

BĐT bên phải: 

Sau khi quy đồng, phân tích thành nhân tử các kiểu gì đó thì cần chứng minh:

${a}^{6}b+{a}^{6}c-{a}^{5}{b}^{2}-{a}^{5}{c}^{2}-{a}^{2}{b}^{5}-{a}^{2}
{c}^{5}+a{b}^{6}+a{c}^{6}+{b}^{6}c-{b}^{5}{c}^{2}-{b}^{2}{c}^{5}+b{c}^
{6} \geqq 0$

Giả sử $c=\min\{a,b,c\}$. Ta cần chứng minh:

Đặt $a=c+x,b=c+y,c=c$ thì $x,y \geqq 0$.

Cần chứng minh: 

$\left( 8\,{x}^{2}-8\,xy+8\,{y}^{2} \right) {c}^{5}+10\, \left( x+y
 \right) \left( 2\,{x}^{2}-3\,xy+2\,{y}^{2} \right) {c}^{4}+ \left( 
20\,{x}^{4}-20\,{x}^{2}{y}^{2}+20\,{y}^{4} \right) {c}^{3}+5\, \left( 
x+y \right) \left( xy \left( 7\,{x}^{2}-13\,xy+7\,{y}^{2} \right) +2
\, \left( x-y \right) ^{4} \right) {c}^{2}+ \left( xy \left( xy
 \left( 29\,{x}^{2}-56\,xy+29\,{y}^{2} \right) +16\, \left( x-y
 \right) ^{4} \right) +2\, \left( x-y \right) ^{6} \right) c+xy
 \left( x+y \right) \left( {x}^{2}+{y}^{2} \right) \left( x-y
 \right) ^{2} \geqq 0$

P/s: Bài này SOS bằng tay đẹp lắm mà thôi tạm thời làm biếng nên không SOS, dùng BW cho nhanh:P

14 tháng 4 2020

SOS của tth_new ghê vãi,đề nghị tth_new check fb giúp t,nói mãi -_-

KMTTQ giả sử \(a\ge b\ge c\)

\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(\Leftrightarrow\left(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}\right)+\left(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}\right)+\left(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}\right)\ge0\)

\(\Leftrightarrow a\left(\frac{a}{b^2+c^2}-\frac{a}{b+c}\right)+b\left(\frac{b}{c^2+a^2}-\frac{b}{c+a}\right)+c\left(\frac{c}{a^2+b^2}-\frac{c}{a+b}\right)\ge0\)

\(\Leftrightarrow a\left[\frac{ab+ac-b^2-c^2}{\left(b+c\right)\left(b^2+c^2\right)}\right]+b\left[\frac{bc+ba-c^2-a^2}{\left(c+a\right)\left(c^2+a^2\right)}\right]+c\left[\frac{ca+cb-a^2-b^2}{\left(a^2+b^2\right)\left(a+b\right)}\right]\ge0\)

\(\Leftrightarrow a\left[\frac{b\left(a-b\right)+c\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\right]+b\left[\frac{c\left(b-c\right)+a\left(b-a\right)}{\left(c^2+a^2\right)\left(c+a\right)}\right]+c\left[\frac{a\left(c-a\right)+b\left(c-b\right)}{\left(a^2+b^2\right)\left(a+b\right)}\right]\ge0\)

\(\Leftrightarrow\Sigma\left[\frac{ab\left(a-b\right)}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{ab\left(a-b\right)}{\left(c^2+a^2\right)\left(c+a\right)}\right]\ge0\)

\(\Leftrightarrow\Sigma ab\left(a-b\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(c^2+a^2\right)\left(c+a\right)}\right]\ge0\) ( đúng )

Vậy ta có ĐPCM

2 tháng 11 2018

\(DPCM\Leftrightarrow P=a^2\left(b-c\right)+b^2\left(c-b\right)+c^2\left(1-c\right)\le\frac{108}{529}\)

Ta có: \(0\le a\le b\le c\le1\Rightarrow a^2\left(b-c\right)\le0\left(1\right)\)

\(b^2\left(c-b\right)=4.\frac{b}{2}.\frac{b}{2}.\left(c-b\right)\le4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4c^3}{27}\)

\(\Rightarrow P\le\frac{4c^3}{27}+c^2\left(1-c\right)=c^2\left(1-\frac{23c}{27}\right)=\frac{23c}{54}.\frac{23c}{54}\left(1-\frac{23c}{27}\right).\frac{54^2}{23^2}\)

2 tháng 11 2018

Tiếp

\(\le\left(\frac{\frac{23c}{54}+\frac{23c}{54}+1-\frac{23c}{27}}{3}\right)^3.\frac{54^2}{23^2}=\frac{1}{27}.\frac{54^2}{23^2}=\frac{108}{529}\)

Dấu bằng xảy ra\(\Leftrightarrow\hept{\begin{cases}a^2\left(b-c\right)=0\\\frac{b}{2}=c-b\\\frac{23c}{54}=1-\frac{23c}{27}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=\frac{2}{3}c\\c=\frac{18}{23}\end{cases}}\)

NV
11 tháng 5 2020

Do vai trò của a;b;c là hoàn toàn như nhau, ko mất tính tổng quát, giả sử \(a\ge b\ge c\)

\(\Rightarrow\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow ab+bc\ge b^2+ac\Leftrightarrow\frac{a}{c}+1\ge\frac{b}{c}+\frac{a}{b}\) (chia 2 vế cho bc)

Tương tự: \(\frac{c}{a}+1\ge\frac{b}{a}+\frac{c}{b}\) (chia 2 vế cho ab)

Cộng vế với vế: \(\frac{a}{c}+\frac{c}{a}+2\ge\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}\)

\(\Rightarrow VT\le2\left(\frac{a}{c}+\frac{c}{a}\right)+2\)

Nên ta chỉ cần chứng minh: \(2\left(\frac{a}{c}+\frac{c}{a}\right)+2\le7\Leftrightarrow\frac{a}{c}+\frac{c}{a}\le\frac{5}{2}\)

Do \(1\le c\le a\le2\Rightarrow1\le\frac{a}{c}\le2\)

Đặt \(\frac{a}{c}=x\Rightarrow1\le x\le2\)

Ta cần chứng minh: \(x+\frac{1}{x}\le\frac{5}{2}\Leftrightarrow2x^2-5x+2\le0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\le0\) (luôn đúng với \(x\in\left[1;2\right]\))

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;1\right);\left(2;1;1\right)\) và hoán vị

11 tháng 5 2020

Vậy là mình làm sai rồi :(

Từ a+b+c=6 \(\Rightarrow\)a+b=6-c

Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9

                               \(\Leftrightarrow\)ab=9-c(a+b)

           Mà a+b=6-c (cmt)

                                \(\Rightarrow\)ab=9-c(6-c)

                                \(\Rightarrow\)ab=9-6c+c2

Ta có: (b-a)2\(\ge\)\(\forall\)b, c

  \(\Rightarrow\)b2+a2-2ab\(\ge\)0

  \(\Rightarrow\)(b+a)2-4ab\(\ge\)0

  \(\Rightarrow\)(a+b)2\(\ge\)4ab

Mà a+b=6-c (cmt)

         ab= 9-6c+c2 (cmt)

  \(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)

  \(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2

  \(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0

  \(\Rightarrow\)-3c2+12c\(\ge\)0

  \(\Rightarrow\)3c2-12c\(\le\)0

  \(\Rightarrow\)3c(c-4)\(\le\)0

  \(\Rightarrow\)c(c-4)\(\le\)0

\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)

*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)

*

14 tháng 2 2022

a/(b+c) + b/(a+c) + c/(a+b) = a^2/(ab+ac) + b^2/(ba+bc) + c^2/(ac+bc) >=

(a+b+c)^2/(2.(ab+bc+ac) (buhihacopxki dạng phân thức)

>= (3.(ab+bc+ac)/(2(ab+bc+ac) =3/2

 

a^2/(b^2+c^2) + b^2/(a^2+c^2) + c^2/(a^2+b^2) >= (a+b+c)^2/(2.(a^2+b^2+c^2) (buhihacopxki dạng phân thức)

>= 3(a^2+b^2+c^2) / 2(a^2+b^2+c^2) >=3/2 

 

15 tháng 2 2022

\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}-\dfrac{3}{2}\ge0\)

\(\Leftrightarrow\left(\dfrac{a}{b+c}-\dfrac{1}{2}\right)+\left(\dfrac{b}{c+a}-\dfrac{1}{2}\right)+\left(\dfrac{c}{a+b}-\dfrac{1}{2}\right)\ge0\)

\(\Leftrightarrow\left(\dfrac{2a-b-c}{2\left(b+c\right)}\right)+\left(\dfrac{2b-a-c}{2\left(a+c\right)}\right)+\left(\dfrac{2c-a-b}{2\left(a+b\right)}\right)\ge0\)

\(\Leftrightarrow\dfrac{a-b+a-c}{2\left(b+c\right)}+\dfrac{b-a+b-c}{2\left(a+c\right)}+\dfrac{c-a+c-b}{2\left(a+b\right)}\ge0\)

\(\Leftrightarrow\dfrac{a-b}{2\left(b+c\right)}+\dfrac{a-c}{2\left(b+c\right)}+\dfrac{b-a}{2\left(a+c\right)}+\dfrac{b-c}{2\left(a+c\right)}+\dfrac{c-a}{2\left(a+b\right)}+\dfrac{c-b}{2\left(a+b\right)}\ge0\)\(\Leftrightarrow\left(a-b\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+c\right)}\right]+\left(a-c\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]+\left(b-c\right)\left[\dfrac{1}{2\left(a+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]\ge0\)

ta có: a,b,c là 3 số dương bất kì nên ta giả sử \(a\ge b\ge c\)

\(\Rightarrow a+c\ge b+c\)

\(\Leftrightarrow2\left(a+c\right)\ge2\left(b+c\right)\)

\(\Leftrightarrow\dfrac{1}{2\left(a+c\right)}\le\dfrac{1}{2\left(b+c\right)}\)

\(\Leftrightarrow\dfrac{1}{2\left(a+c\right)}-\dfrac{1}{2\left(b+c\right)}\ge0\)

Mà \(a\ge b\Rightarrow a-b\ge0\)

\(\Rightarrow\left(a-b\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+c\right)}\right]\ge0\left(1\right)\)

Chứng minh tương tự, ta có:

\(\left(a-c\right)\left[\dfrac{1}{2\left(b+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]\ge0\left(2\right)\)

\(\left(b-c\right)\left[\dfrac{1}{2\left(a+c\right)}-\dfrac{1}{2\left(a+b\right)}\right]\ge0\left(3\right)\)

Cộng từng vế (1);(2);(3)  \(\Rightarrow\) luôn đúng

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)