TÌm giá trị nguyên n để p/s:
A=\(\frac{2n+7}{n+1}\)
Có giá trị là số nguyên. (Trình bày chi tiết).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{n^4-3n^3-n^2+3n+7}{n-3}=\frac{n^3\left(n-3\right)-\left(n^2-3n\right)+7}{n-3}=\frac{n^3\left(n-3\right)-n\left(n-3\right)+7}{n-3}\)
\(=\frac{\left(n-3\right)\left(n^3-n\right)+7}{n-3}=\frac{\left(n-3\right)\left(n^3-n\right)}{n-3}+\frac{7}{n-3}=n^3-n+\frac{7}{n-3}\)
Theo đề bài n là số nguyên => \(n^3-n\) là số nguyên
Để \(n^3-n+\frac{7}{n-3}\) có giá trị là 1 số nguyên <=> \(\frac{7}{n-3}\) có giá trị là 1 số nguyên
=> n - 3 là ước của 7 => Ư(7) = { - 7; - 1; 1; 7 }
Ta có bảng sau :
n - 3 | - 7 | - 1 | 1 | 7 |
n | - 4 | 2 | 4 | 10 |
Mà x là số nguyên lớn nhất => x = 10
Vậy x = 10
Để \(A=\frac{2n+7}{n+1}\) là số nguyên
\(\Rightarrow\left(2n+7\right)⋮n+1\)
\(\Rightarrow\left(n+1\right)⋮n+1=\left(n+1\right)\cdot2⋮n+1=\left(2n+2\right)⋮n+1\)
\(\Rightarrow\left(2n+7\right)-\left(2n+2\right)⋮n+1\)
\(\Rightarrow2n+7-2n-2⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)\)
\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\)Ta có bảng sau :
\(n+1\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(0\) | \(-2\) | \(4\) | \(-6\) |
Vậy \(n\in\left\{0;-2;4;-6\right\}\)thì \(A\)mới có giá trị nguyên
Ta có \(A=\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\)
Để \(A\in Z\)thì \(\frac{5}{n+1}\in Z\)
\(\Rightarrow n+1\inƯ_{\left(5\right)}=\left\{\pm1;\pm5\right\}\)
n+1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
Vậy \(n\in\left\{0;-2;4;-6\right\}\)
a) \(A=\frac{6n+7}{2n+3}=\frac{6n+9}{2n+3}-\frac{2}{2n+3}\) nguyên
<=> 2n + 3 thuộc Ư(2) = {-2; -1; 1; 2}
<=> 2n thuộc {-5; -4; -2; -1}
Vì n nguyên nên n thuộc {-2; -1}
b) A có GTNN <=> \(\frac{2}{2n+3}\) có GTLN
<=> 2n + 3 là số nguyên dương nhỏ nhất
<=> 2n + 3 = 1
<=> 2n = -2
<=> n = -1
a)\(A=\frac{6n+7}{2n+3}=\frac{2n+2n+2n+3+4}{2n+3}=\frac{4}{2n+3}\)
\(\Rightarrow2n+3\in\text{Ư}\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
Nếu 2n+3 = 1 => n = -2 (nhận)
Nếu 2n+3 = 2 => n =-0,5 (loại)
Nếu 2n + 3 = 4 => n = 3,5 (loại)
Nếu 2n + 3 = -1 => n = 1 (nhận)
Nếu 2n + 3 = -2 => n = -2,5 (loại)
Nếu 2n + 3 = -4 => n =-3,5 (loại)
Vậy n \(\in\) {-2;1}
b) A GTNN => \(\frac{2}{2n+3}\) có GTLN
=> 2n + 3 là số nguyên dương nhỏ nhất
=> 2n + 3 = 1
=> 2n = -2
=> n = -1
Bài 1:
a) ta có: \(A=\frac{2n-1}{n-3}=\frac{2n-6+5}{n-3}=\frac{2.\left(n-3\right)+5}{n-3}=\frac{2.\left(n-3\right)}{n-3}+\frac{5}{n-3}\)\(=2+\frac{5}{n-3}\)
Để A có giá trị nguyên
\(\Rightarrow\frac{5}{n-3}\in z\)
\(\Rightarrow5⋮n-3\Rightarrow n-3\inƯ_{\left(5\right)}=\left(5;-5;1;-1\right)\)
nếu n-3 = 5 => n = 8 (TM)
n-3 = -5 => n= -2 (TM)
n-3 = 1 => n = 4 (TM)
n-3 = -1 => n = 2 (TM)
KL: \(n\in\left(8;-2;4;2\right)\)
b) ta có: \(A=2+\frac{5}{n-3}\) ( pa)
Để A đạt giá trị lớn nhất
=> \(\frac{5}{n-3}\le5\)
Dấu "=" xảy ra khi
\(\frac{5}{n-3}=5\)
\(\Rightarrow n-3=5:5\)
\(n-3=1\)
\(n=4\)
KL: n =4 để A đạt giá trị lớn nhất
Bài 2 bn làm tương tự nha!
a.\(A=\frac{6n+7}{2n+1}=\frac{3\left(2n+1\right)-3+7}{2n+1}=3+\frac{4}{2n+1}\)
Để A nguyên thì 4 phải chia hết cho 2n+1
=> 2n+1 \(\varepsilon\)Ư(4) = {-4;-2;-1;1;2;4}
Mà 2n + 1 là số lẻ
=> 2n + 1 \(\varepsilon\){-1;1}
=> 2n \(\varepsilon\){-2;0}
=> n \(\varepsilon\){-1;0}
Vậy:...
mình nghĩ bạn sai đề mình sửa 2n-17 thành 2n+17
Ta có d thuộc UCLN(n-8,2n-17)
suy ra: n-8 chia hết d và 2n +17 chia hết d
= 2(n-8) chia hết d và 2n +17 chia hết d
Ta tính hiệu của chúng
2(n-8) --- 2n + 17
=2n -16 ---- 2n +17
=(2n+-2n) ---(-16 + 17)
=0+1=1
suy ra UCLN của chúng là 1
phân số tối giản(đpcm)
tam giác=tác giam; tác=đánh, giam=nhốt; đánh nhốt=đốt nhánh; đốt=thiêu, nhánh=cành; thiêu cành=thanh kiều. Cô giáo tên Thanh Kiều
\(A=\frac{2n+7}{n+1}\)
\(A=\frac{2n+2+5}{n+1}\)
\(A=\frac{2\left(n+1\right)}{n+1}+\frac{5}{n+1}\)
\(A=2+\frac{5}{n+1}\)
Vì 2 là số nguyên nên để A nguyên thì: \(\frac{5}{n+1}\)phải nguyên
=> n + 1 thuộc Ư(5)
=> n + 1 thuộc {1,5,-1,-5}
=> n thuộc {0,4,-2,-6}
Rồi giải thích rõ tại sao 2n+7=2(n+1)+5.