B=(3x-4).(4y-3)-(4x-3).(3y-4)
Chứng minh Bchia hết cho 7với mọi x,y thuộc z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B= [3x-4] . [ 4y-3] - [4x-3 ] . [ 3y-4]
B=12xy -9x-16y+12-12xy-16x-9y+12
B=-25x -25 y +24
bạn lấy kết quả trên chia cho 7
chứng minh nó chia hết cho 7 với mọi x ,y ,thuộc tập hợp Z
Lời giải:
\(\frac{4x-5y}{3}=\frac{5z-3x}{4}=\frac{3y-4z}{5}\)
\(=\frac{3(4x-5y)}{9}=\frac{4(5z-3x)}{16}=\frac{5(3y-4z)}{25}\)
\(=\frac{12x-15y}{9}=\frac{20z-12x}{16}=\frac{15y-20z}{25}=\frac{12x-15y+20z-12x+15y-20z}{9+16+25}=0\)
\(\Rightarrow 4x-5y=5z-3x=3y-4z=0\)
\(\Rightarrow 4x=5y; 3y=4z\Rightarrow \frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
\(4x-xy+2y=3\)
\(\Rightarrow x\left(4-y\right)-8+2y=3-8\)
\(\Rightarrow x\left(4-y\right)-2\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(y-4\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tự xét bảng
\(3y-xy-2x-5=0\)
\(\Rightarrow y\left(3-x\right)-2x=5\)
\(\Rightarrow y\left(3-x\right)+6-2x=5+6\)
\(\Rightarrow y\left(3-x\right)+2\left(3-x\right)=11\)
\(\Rightarrow\left(y+1\right)\left(3-x\right)=11\)
\(\Rightarrow\left(3-x\right);\left(y+1\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự xét
\(2xy-x-y=100\)
\(\Rightarrow x\left(2y-1\right)-y=100\)
\(2x\left(2y-1\right)-\left(2y-1\right)=100+1\)
\(\left(2x-1\right)\left(2y-1\right)=101\)
\(\Rightarrow\left(2x-1\right);\left(2y-1\right)\inƯ\left(101\right)=\left\{\pm1;\pm101\right\}\)
Tự xét bảng
P/s : bài 3 có gì sai ko ?
bài này của bạn chx đủ đk hay sao ý,xem lại đề đi
(3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2 =
= (12x-8y)/16 = (6z-12x)/9 = (8y-6z)/4 = (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0
<=>
{12x - 8y = 0
{6z - 12x = 0
{8y - 6z = 0
<=>
{x/2 = y/3
{z/4 = x/2
{y/3 = z/4
<=> x/2 = y/3 = z/4
Học tốt!
Vì \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(\Rightarrow\frac{4\left(3x-2y\right)}{16}=\frac{3\left(2z-4x\right)}{9}=\frac{2\left(4y-3z\right)}{4}\)
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}\)
\(=\frac{\left(12x-12x\right)+\left(8y-8y\right)+\left(6z-6z\right)}{16+9+4}\)
\(=\frac{0}{16+9+4}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2z-4x=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=2y\\2z=4x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{4}\end{matrix}\right.\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)
\(B=\left(3x-4\right).\left(4y-3\right)-\left(4x-3\right).\left(3y-4\right)=12xy-9x-16y+12-\left(12xy-16x-9y+12\right)\) \(=7x-7y=7.\left(x-y\right)⋮7\)