K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

=1/2000-1/2001+1/2001-1/2002+1/2002-1/2003+......+1/2009-1/2010

=1/2000-1/2010

=1/402000

20 tháng 7 2016

\(\frac{1}{2000+2001}+\frac{1}{2001+2002}+\frac{1}{2002+2003}+...+\frac{1}{2009+2010}\)

\(=\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2003}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(=\frac{1}{2000}-\frac{1}{2010}\)

\(=\frac{1}{402000}\)

20 tháng 7 2016

\(\frac{1}{2000}\)+2001+\(\frac{1}{2001}\)+ 2002+\(\frac{1}{2002}\)+2003+...+\(\frac{1}{2009}\)+2010

2001,0005+2002,0005+2003,0005+...+2010,0005

Số số hạng là:

(2010,0005-2001,0005)+1=10( số)

Số cặp số hạng là:

10:2= 5 ( cặp)

Tổng từng cặp là: 2001,0005+2010,0005=2002,0005+2009,0005=...=4011,001

Tổng của các số hạng trên là :

4011,001x5=20055,005

20 tháng 7 2016

\(\frac{1}{2000+2001}+\frac{1}{2001+2002}+\frac{1}{2002+2003}+...+\frac{1}{2009+2010}\)

\(=\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2002}-...+\frac{1}{2009}-\frac{1}{2010}\)

\(=\frac{1}{2000}-\frac{1}{2010}\)

\(=\frac{1}{402000}\)

18 tháng 9 2016

Ta có: \(\left(\frac{x+4}{2000}\right)+\left(\frac{x+3}{2001}\right)=\left(\frac{x+2}{2002}\right)+\left(\frac{x+1}{2003}\right)\)

\(\Rightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Rightarrow\left(x+2004\right).\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}+\frac{1}{2003}\right)=0\)

Vì \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}+\frac{1}{2003}\ne0\)

=> x + 2004 =0

=> x             = -2004

19 tháng 4 2017

B = \(\frac{2001}{2002}+\frac{2002}{2003}\)

có: \(\frac{2000}{2001}>\frac{2000}{2001}+2002\)

\(\frac{2001}{2002}>\frac{2001}{2001}+2002\)

Vậy A>B

\(\dfrac{x+4}{2000}\) + \(\dfrac{x+3}{2001}\) =\(\dfrac{x+2}{2002}\) + \(\dfrac{x+1}{2003}\)


<=> \(\dfrac{x+4}{2000}\) + 1 + \(\dfrac{x+3}{2001}\) +1 = \(\dfrac{x+2}{2002}\) + 1 + \(\dfrac{x+1}{2003}\) + 1

<=>\(\dfrac{x+4}{2000}\)+\(\dfrac{2000}{2000}\)+\(\dfrac{x+3}{2001}\) \(\dfrac{2001}{2001}\) = \(\dfrac{x+2}{2002}\)+\(\dfrac{2002}{2002}\)+\(\dfrac{x+1}{2003}\)+\(\dfrac{2003}{2003}\)


<=> \(\dfrac{x+4+2000}{2000}\)+\(\dfrac{x+3+2001}{2001}\) = \(\dfrac{x+2+2002}{2002}\)+ \(\dfrac{x+1+2003}{2003}\)


<=> \(\dfrac{x+2004}{2000}\) + \(\dfrac{x+2004}{2001}\) - \(\dfrac{x+2004}{2002}\) - \(\dfrac{x+2004}{2003}\) = 0


<=> (x+2004)(\(\dfrac{1}{2000}\) + \(\dfrac{1}{2001}\) - \(\dfrac{1}{2002}\) -\(\dfrac{1}{2003}\)) = 0


\(\dfrac{1}{2000}\) + \(\dfrac{1}{2001}\) - \(\dfrac{1}{2002}\) - \(\dfrac{1}{2003}\) khác 0


nên x+2004=0

=>x=0-2004
=> x = -2004
vậy S = -2004.

Tick nhabanhqua