Phân tích các dda thức sau thành nhân tử
\(25-x^2+4xy-y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xy + y2 - x - y
= ( xy – x ) + ( y^2 – y )
= x (y – 1) + y (y – 1)
= (y – 1) (x + y)
b) 25 – x^2 + 4xy - 4y^2
= 5^2 – (x^2 – 4xy + 4y^2)
= 5^2 – (x – 2y)^2
= (5 – x + 2y)(5 + x – 2y)
Tik mình với
\(a,=2xy\left(2y-x\right)\\ b,=x^2\left(x-4\right)+5\left(x-4\right)=\left(x^2+5\right)\left(x-4\right)\\ c,=\left(x-y\right)\left(x^2-25\right)=\left(x-y\right)\left(x-5\right)\left(x+5\right)\)
\(a,x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
\(b,25-4x^2-4xy-y^2\)
\(=25-\left(4x^2+4xy+y^2\right)\)
\(=5^2-\left(2x+y\right)^2\)
\(=\left(5-2x+y\right)\left(5+2x+y\right)\)
\(c,x^3-x+y^3-y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+1\right)\)
a) x3-2x2-x+2
=x(x2-1)+2(-x2+1)
=x(x2-1)-2(x2-1)
=(x2-1)(x-2)
b)
x2+6x-y2+9
=x2+6x+9-y2
=(x+3)2-y2
=(x+3-y)(x+3+y)
x^2- 4y^2 + 4xy
= x^2 + 4xy - 4y^2
=x^2 + 2x2y - (2y)^2
= ( x - 2y )^2
\(x^2-25-4xy+4y^2\)
\(=\left(x^2-4xy+4y^2\right)-25\)
\(=\left[x^2-2\cdot x\cdot2y+\left(2y\right)^2\right]-25\)
\(=\left(x-2y\right)^2-5^2\)
\(=\left(x-2y-5\right)\cdot\left(x-2y+5\right)\)
a) xy + y2 - x - y
= ( xy – x ) + ( y^2 – y )
= x (y – 1) + y (y – 1)
= (y – 1) (x + y)
b) 25 – x^2 + 4xy - 4y^2
= 5^2 – (x^2 – 4xy + 4y^2)
= 5^2 – (x – 2y)^2
= (5 – x + 2y)(5 + x – 2y)
Tik mình với
đề sai
đề đúng rồi mà bạn