Cho a + b + c = 0, ab + bc+ ca = 0.
Tính P = (a - 1)2017 + b2018 + (c + 1)2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=0\)
=>a=b=c=0
\(A=\left(0+1\right)^{2016}+\left(0-1\right)^{2017}+0^{2018}\)
\(=1-1+0=0\)
bài 1
ab+bc+ca=0
=>ab+bc=-ca
ta có (a+b)(b+c)(c+a)/abc
=> (ab+ac+bc+b2)(c+a)/abc
=> (0+b2)(c+a)/abc
=>b2c+b2a/abc
=>b(ab+bc)/abc
=>b(-ac)/abc
=>-abc/abc=-1
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:
(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
ai làm giúp em phép tính này với em làm mãi ko dc ạ
bài 5 tính nhanh
a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2
b 100 -5 -5 -...-5 ( có 20 chữ số 5 )
c 99- 9 -9 - ... -9 ( có 11 chữ số 9 )
d 2011 + 2011 + 2011 + 2011 -2008 x 4
i 14968+ 9035-968-35
k 72 x 55 + 216 x 15
l 2010 x 125 + 1010 / 126 x 2010 -1010
e 1946 x 131 + 1000 / 132 x 1946 -946
g 45 x 16 -17 / 45 x 15 + 28
h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1
Ta có: \(a^2+2019=a^2+ab+bc+ca=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự ta có : \(b^2+2019=\left(a+b\right)\left(b+c\right)\)
\(c^2+2019=\left(a+c\right)\left(b+c\right)\)
\(\Rightarrow\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ac}{\left(a+b\right)\left(b+c\right)}+\frac{c^2-ab}{\left(a+c\right)\left(b+c\right)}\)\(=\frac{\left(a^2-bc\right)\left(b+c\right)+\left(b^2-ac\right)\left(a+c\right)+\left(c^2-ab\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)\(=\frac{a^2b-b^2c+a^2c-bc^2+ab^2-a^2c+b^2c-ac^2+ac^2+bc^2-a^2b-ab^2}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=0\)\(\Rightarrow dpcm\)
\(\text{Thay }ab+bc+ac=2019\text{ vào biểu thức trên, ta có: }\)
\(\frac{a^2-bc}{a^2+ab+bc+ac}+\frac{b^2-ac}{b^2+ab+bc+ac}+\frac{c^2-ab}{c^2+ab+bc+ac}\)
\(=\frac{\left(a^2-bc\right).\left(b+c\right)}{\left(a+c\right).\left(a+b\right).\left(b+c\right)}+\frac{\left(b^2-ac\right).\left(a+c\right)}{\left(a+b\right).\left(b+c\right).\left(a+c\right)}+\frac{\left(c^2-ab\right).\left(a+b\right)}{\left(a+c\right).\left(b+c\right).\left(a+b\right)}\)
\(=\frac{a^2b+a^2c-b^2c-bc^2+b^2a+b^2c-a^2c-ac^2+c^2a+c^2b-a^2b-ab^2}{\left(a+c\right).\left(a+b\right).\left(b+c\right)}=0\)
Vậy...
Binh phương a+b+c=0
Ta có\(a^2+b^2+c^2+2ab+2ab+2bc=0\)
mà\(ab+ac+bc=0\)
=>\(a^2+b^2+c^2=0\)
theo bất đẳng Cauchy ta có \(a^2+b^2+c^2 \) > \(ab+ac+bc\)
mà \(a^2+b^2+c^2=ab+ac+bc=0\)
Dấu"=" xảy ra khi và chỉ ra \(a=b=c\)
mà \(a+b+c=0(giả thiết)\)
=>\(a=b=c=0\)
=> P= \((0-1)^{2017}+0^{2018}+(0+1)^{2019}\)=0
Vậy P=0
theo đề ra ta có \(\left(a+b+c\right)^2=0^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
thay ab+bc+ac=0 vào ta được \(a^2+b^2+c^2=0\Rightarrow\hept{\begin{cases}b=0\\a=0\\c=0\end{cases}}\)vì\(\hept{\begin{cases}a^2\ge0\\b^2\ge0\\c^2\ge0\end{cases}}\)
bạn tự thay vào tính nhé