CMR nếu a/b=c/d thì 5a+3b/5a-3b = 5c+3d/5c-3d ( bằng 3 cách )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}\) = \(\dfrac{5a+3b}{5c+3d}\) (1)
\(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\) (2)
Kết hợp (1) và (2) ta có:
\(\dfrac{5a+3b}{5c+3d}\) = \(\dfrac{5a-3b}{5c-3d}\)
⇒ \(\dfrac{5a+3b}{5a-3b}\) = \(\dfrac{5c+3d}{5c-3d}\) (đpcm)
b; \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{b}\) = \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}\) (1)
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\left(đpcm\right).\)
Chúc bạn học tốt!
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=>\frac{5a}{5c}=\frac{3b}{3d}=>\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
\(=>\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\left(DPCM\right)\)
Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3b}{3d}=\frac{5a}{5c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{3b}{3d}=\frac{5a}{5c}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
=> \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) (điều phải chứng minh)
từ a/b = c/d => a/c = b/d => 5a/5c = 3b/3d
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
từ: \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)áp dụng tính chất ta dc
\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(đcpm)
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$.
Khi đó:
$\frac{5a+3b}{5a-3b}=\frac{5bk+3bk}{5bk-3bk}=\frac{8bk}{2bk}=4(1)$
$\frac{5c+3d}{5c-3d}=\frac{5dk+3dk}{5dk-3dk}=\frac{8dk}{2dk}=4(2)$
Từ $(1); (2)$ suy ra điều phải chứng minh.
Ta đặt \(\frac{a}{b}=\frac{c}{d}=k\). Ta có \(a=bk\)và \(c=dk\)
Ta có : \(\frac{5a+3b}{5c+3d}=\frac{5bk+3b}{5dk+3d}=\frac{b\left(5k+3\right)}{d\left(5k+3\right)}=\frac{b}{d}\)
\(\frac{5a-3b}{5c-3d}=\frac{5bk-3b}{5dk-3d}=\frac{b\left(5k-3\right)}{d\left(5k-3\right)}=\frac{b}{d}\)
\(\Rightarrow\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\Rightarrowđpcm\).
Cách 2 : Ta có : \(\frac{5a+3b}{5c+3d}=\frac{5bk+3b}{5dk+3d}=\frac{b\left(5k+3\right)}{d\left(5k+3\right)}=\frac{b}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}\)Áp dụng t/c dãy tỉ số bằng nhau, ta có
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\Rightarrowđpcm\)