Cho \(\Delta ABC\)nhọn có BD và CE là 2 đường cao. Các điểm N và M lần lượt nằm trên đoạn thẳng BD, CE sao cho \(\widehat{ABM}=\widehat{ANC}=90\)độ . Cm \(\Delta AMN\)cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hinh bn tu ve nhe
\(\infty:\)dong dang
\(\Delta ABD\infty\Delta ACE\)(g.g) \(\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\)
\(\Rightarrow AE.AB=AD.AC\) (1)
\(\Delta AMB\infty\Delta AEM\)(g.g) \(\Rightarrow\frac{AM}{AE}=\frac{AB}{AM}\Rightarrow AM^2=AE.AB\)(2)
\(\Delta ANC\infty\Delta ADN\)(g.g) \(\Rightarrow\frac{AN}{AD}=\frac{AC}{AN}\Rightarrow AN^2=AD.AC\)(3)
Tu (1), (2), (3) \(\Rightarrow AM^2=AN^2\Rightarrow AM=AN\)
\(\Rightarrow\)\(\Delta AMN\)can tai A
Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AE*AB
ΔANB vuông tại N có NE vuông góc AB
nên AN^2=AE*AB
ΔAMC vuông tại M có MD vuông góc AC
nên AM^2=AD*AC
=>AN=AM
Theo đề có: `ΔAMC` là Δ vuông, đường cao `MD`.
=> `AM^2=AD.AC` (1)
`ΔANB` là Δ vuông, đường cao `NE`:
=> `AN^2=AE.AB` (2)
Lại có: `ΔABD=ΔACE`(g.g)
=> \(\dfrac{AB}{AC}=\dfrac{AD}{AE}\Leftrightarrow AB.AE=AC.AD\left(3\right)\)
Từ (1), (2), (3) suy ra: `AM=AD` (đpcm)
$HaNa$
Ta có \(\widehat{ABI}\)là góc ngoài của \(\Delta ABD\Rightarrow\widehat{ABI}\)\(=90^0+\widehat{A}\)
\(\widehat{ACK}\)là góc ngoài của \(\Delta ACE\Rightarrow\widehat{ACK}\)\(=90^0+\widehat{A}\)
\(\Rightarrow\widehat{ABI}\)\(=\widehat{ACK}\)
Xét \(\Delta IBA\)và\(\Delta ACK\)có :
IB = AC (gt)
\(\widehat{ABI}\)\(=\widehat{ACK}\)( cmt)
AB = CK ( gt )
\(\Rightarrow\Delta IBA=\Delta ACK\)( c . g . c )
\(\Rightarrow AI=AK\)( 2 cạnh tương ứng ) (1)
Vì \(\Delta AKE\)vuông tại A \(\Rightarrow\widehat{EAK}\)+\(\widehat{AKE}=90^0\)
Mà \(\widehat{AKE}=\widehat{IAB}\)( vì \(\Delta IBA=\Delta ACK\left(cmt\right)\)
\(\Rightarrow\widehat{IBA}+\widehat{EAK}=90^0\) (2)
Từ (1) và (2) \(\Rightarrow\)\(\Delta AIK\)vuông cân tại A