Tìm số tự nhiên nhỏ nhat để khi chia 10 dư 3; chia 12 dư 5; chia 15 dư 8 và số đó chia hết cho 19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Gọi số tự nhiên cần tìm là a\(\left(a\in N,a\ne0\right)\)
Ta có:a:3 dư 2\(\Rightarrow\)2a:3 dư 1\(\Rightarrow2a-1⋮3\)(1)
a:5 dư 3\(\Rightarrow\)2a:5 dư 1\(\Rightarrow2a-1⋮5\)(2)
a:7 dư 4\(\Rightarrow\)2a:7 dư 1\(\Rightarrow2a-1⋮7\)(3)
Từ (1),(2) và (3)\(\Rightarrow2a-1\in BC\left(3,5,7\right)\)
Mà a là số tự nhiên nhỏ nhất
\(\Rightarrow2a-1\in BCNN\left(3,5,7\right)\)
\(\Rightarrow2a-1=105\)
\(\Rightarrow2a=106\)
\(\Rightarrow a=53\)
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
1) Chia cho 8 dư 6 là 190;chia 12 dư 10 là 286;chia 15 dư 13 là 358 . 2)Số tự nhiên nhỏ nhất khi chia cho 3;4;5 có số dư theo thứ tự 1;3;1 là 4;7;6. Mình ko chắc đâu nha!!!
câu 1 sai đề đúng ko bạn
phải là cái này mới đúng :1)tìm số tự nhiên nhỏ nhất khi chia cho 8 dư 6;chia 12 dư 10;chia 15 dư 16 và chia hết cho 23
gọi số đó là a
ta có a = 3k + 2
a = 4k+ 3
a= 5k + 4
a= 10k + 9
=> 4a = 22 k + 18
=> 4a - 18 là bội của 22
tự tìm a nhé
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
a chia 6 dư 5 nên a + 1 chia hết cho 6
a chia 5 dư 4 nên a + 1 chia hết cho 5
a chia 4 dư 3 nên a + 1 chia hết cho 4
a chia 3 dư 2 nên a + 1 chia hết cho 3
a chia hết 10 dư 9 nên a+1 chia hết cho 10
Vậy a + 1 là một số chia hết cho 5; 4; 3; 2,10 mà số nhỏ nhất chia hết cho 5; 4; 3; 2 ;9 là 60 nên:
a + 1 = 60
a = 60 - 1
a = 59
Số cần tìm là 59
Giải :
Vì x : 3 dư 2 => x + 1 ⋮ 3
x : 4 dư 3 => x + 1 ⋮ 4
x : 5 dư 4 => x + 1 ⋮ 5
x : 10 dư 9 => x + 1 ⋮ 10
Mà x nhỏ nhất => x ∈ BCNN( 3 ; 4 ; 5 ; 10 )
3 = 3 ; 4 = 22 ; 5 = 5 ; 10 = 2.5 => BCNN ( 3 ; 4 ; 5 ; 10 ) = 3.22.5 = 180
=> x + 1 = 180 => x = 180 - 1 => x = 179
Vậy x = 179
gọi số đó là a, ta có:
a chia 10 dư 3; chia 12 dư 5; chia 15 dư 8 và số đó chia hết cho 19. suy ra a=7 chia hết cho 10,12,15=> a+7 thuộc BCNN(10,12,15)
ta có BCNN(10,12,15)=60
suy ra a+7 thuộc B(60)={0,60,120,180,240,300,360,420,480,540,600,660,720,780,.....}
bạn lấy mấy số đó trừ 7 rồi xem số nào chia hết cho 19 là dc